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Abstract

Typical derivations of kinetic theory equations often exchange the contact time of the
particle on a wall with the period of the particle’s motion between walls. In this paper we
redefine pressure as time-dependent in order to solve this issue and show that this definition
makes much more intuitive and theoretical sense than our old definition of pressure.

1 Introduction
In typical introductory physics, teachers often combine Newtonian mechanics and the ideal gas
law,

PV = NkT

to prove that

K =
3

2
kT

where K is the average kinetic energy of the ideal gas, k is Boltzmann’s constant, and T is the
temperature of the gas.

About a year ago, I decided to revisit this derivation. I began by considering a single particle
bouncing off the wall of a rectangular prism and applying Newton’s second law as anyone might,
but I hit a road block when trying to derive the contact time of the particle with the wall. Online
research showed that physicists typically solve this problem by simply plugging in the period of the
particle’s journey to and from the wall. This clearly does not equal the contact time and results in
a totally different impulse applied to the wall, but nevertheless the derivation gives correct results.
It turns out that the problem does not lie in Newton’s equations (heaven forbid), but rather in our
definition of pressure.

As we shall see,

P =
F

A
(1.0.1)

does not suffice as a definition of pressure. Instead, we must include time dependence, giving us a
new definition of

Pn = lim
τ→∞

1

τA

∫ τ

0

Fn(t)dt (1.0.2)

where Pn represents the pressure exerted by particle n on one wall, A represents the area of said
wall, τ represents an arbitrary period of time, and Fn(t) represents the function of the force the
particle applies to the wall over time.

David Thompson goes over this fact in The Physics Teacher [Tho97], but he does not give the
full derivation nor does he give an explicit mathematical definition of pressure as we do here.

In addition, Semat and Katz [SK58] show a clever method to get around the pressure problem by
calculating the impulse for a large portion of particles first and then canceling the ∆t’s afterwards.
However, this still does not address pressure’s time-dependent nature, which we will discuss here.
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Figure 1: Particle n approaches wall of area A with velocity vx.

2 The Problem

2.1 The Original Derivation
We begin our derivation with Newton’s second law on the x axis,

F = m
∆vx
∆t

(2.1.1)

where ∆t is the particle’s contact time with the wall. Assuming a perfectly elastic collision with
the wall for an ideal gas, the total change in velocity will equal 2vx (we invert the x axis here to
get rid of the negative sign), giving us

F =
2mvx

∆t
. (2.1.2)

Now we must find an expression for ∆t to plug in; unfortunately, we have no way to derive this
information. Newton only tells us what the impulse should be, not the time over which it occurs.
Instead, most derivations input the period of the particle’s back-and-forth motion in the box, which
I will label as τ . We have

τ =
2Lx
vx

(2.1.3)

where Lx is the length of our box in the x direction (see Figure 1). Plugging this into Newton’s
equation gives us

F =
mv2x
Lx

(2.1.4)

which works nicely with the old definition of pressure, P = F
A and spits out

P =
mv2x
LxA

. (2.1.5)

If we assume this particle has a square velocity equal to the average square velocity of all particles
in the box, we can simply multiply the RHS by the total number of particles, N , to get the total
pressure on our single wall. According to the ideal gas law, P = NkT

V , so we have

Nmv2x
LxA

=
NkT

V
(2.1.6)

where V represents the volume of the box, or LxA. Thus we can cancel the N terms and volume
terms on both sides, leaving us with

mv2x = kT. (2.1.7)

Statistically, since every set of axes and reference frame gives the same results, this equation applies
to the y and z axes as well. If we use the Pythagorean theorem to find the total velocity in terms
of component velocities and take the equation’s average, we also find

v2 = v2x + v2y + v2z . (2.1.8)
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Combining these two facts, we find that v2 = 3v2x. Equation 2.1.7 therefore generalizes to three
dimensions and becomes,

mv2 = 3kT. (2.1.9)

Dividing by 2, we find that the LHS becomes the equation for average kinetic energy, giving us
our final result of

K =
3

2
kT. (2.1.10)

2.2 Old Issues
Not only does our old definition of pressure fail to properly derive the above equation using New-
tonian mechanics; it also fails to intuitively describe single-particle systems.

Consider, for instance, a cubic box with a single particle in it at temperature T. Empirical
evidence confirms the equation we just derived, so we know for a fact that this temperature
determines the velocity of our single particle in the box. This velocity in turn sets the impact force
of our particle on the wall. Now, if we double the length of our box along an isotherm, the ideal
gas equation tells us that the pressure must halve as the volume doubles and NkT stays constant.

However, this constant temperature implies a constant particle velocity and therefore the same
impact force. The wall’s area hasn’t changed either, so we see that P = F

A stays constant, violating
the ideal gas law.

In addition, consider an infinite wall sitting in open space with a single particle moving towards
it. The particle hits the wall once, rebounds, and proceeds in the opposite direction, never to
return. According to our old definition of pressure, the particle exerts a small force on this wall
because it came in contact with it. However, we can call this wall a box of infinite length, area,
and volume; as such the pressure must be zero according to the ideal gas law.

We must resolve these discrepancies in some way. But how?

3 Our New Definition

3.1 What Changes?
Something must change in the previous examples to result in a different pressure. However, we
can rule out area, temperature, force, velocity, volume, and so on; we have already accounted for
these quantities in the equations themselves.

Instead, the frequency of impact changes. The particle impacts the wall half as often in the
first example and, for all practical purposes, never in the second example, so we must define a new,
time-dependent version of the old pressure equation.

3.2 Time Dependence
In order to keep the proper units of pressure, we can assume that our new definition of pressure
will include the average value of force over time as opposed to force itself:

Pn =
1

τA

∫ τ

0

Fn(t)dt (3.2.1)

However, we have no way to determine this arbitrary time interval, τ . Since pressure is an emer-
gent, macroscopic property, we can extend the time interval to infinity to encompass all possible
microstates and reach a proper value:

Pn = lim
τ→∞

1

τA

∫ τ

0

Fn(t)dt (3.2.2)

Thus, we have a new definition of pressure for individual particles. In the first example above, the
doubled length of the container would halve the frequency at which the particle impacted the wall,
therefore halving the average and halving the pressure, just as the ideal gas law says.

In the second example, the time-dependent force function has one small blip when t is small
and nothing else; thus, its average goes to zero as τ goes to zero. The pressure becomes zero, just
as we expected.
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Figure 2: Fn(t) resembles a square wave of period τ with "blips" of height F and duration ∆t.

Figure 3: The average value of a square wave tends towards the average over one period as the
interval goes to infinity.

Now that we have shown how the new definition fares against our two theoretical examples, let’s
go through the derivation from the beginning of this paper once more. We’ll find that Newton’s
laws stay intact this time.

3.3 The New Derivation
Let’s start the new derivation by examining how the force on our one wall changes over time. For
the purpose of simplicity we’ll assume that the force is constant for the entire interaction, growing
to some value immediately and falling back to zero after impact. We can therefore represent our
force function as a sort of square wave (see Figure 2). Each "blip" represents the particle hitting
the wall with force F and duration ∆t, and each event repeats after a period of τ .

The average over this periodic function as the interval goes to infinity turns out to be the same
as the average over one period (see Figure 3). This is the reason we used τ for both our arbitrary
time interval and our period. As such, our original definition shrinks down to

Pn =
1

τA

∫ τ

0

Fn(t)dt. (3.3.1)

The area over a single period is just the area under a single "blip," or F∆t, making our equation

Pn =
F∆t

τA
. (3.3.2)

However, we already know the value of F ; we calculated it in Equation 2.1.2. Combining these
equations gives us

Pn =
2mvx∆t

τA∆t
=

2mvx
τA

. (3.3.3)

If we plug in our expression for τ from Equation 2.1.3, our equation finally turns into Equation
2.1.5:

Pn =
mv2x
LxA

. (3.3.4)

The rest of the derivation follows normally.

3.4 Macroscopic View
We have one last test for our new definition of pressure: on large scales, it must tend towards
the regular definition of pressure, P = F

A , similar to Bohr’s correspondence principle in quantum
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mechanics. If we imagine a total force function F (t) for a large number of particles, this is clearly
the case; statistically speaking, this graph would be approximately flat, since particles constantly
and randomly hit all walls of the box. Thus, the average value of the function over time would
equal the value of the flat function itself; P would really equal FA .

4 Conclusions
Our new definition of pressure represents little more than a curiosity; it leads to the same macro-
scopic predictions and laws and assumes a classical universe. This new definition may help modern
physics in laying the framework for quantum thermodynamics and operator counterparts, but it
mainly serves to clear up confusion for those first working through the derivation and learning
kinetic theory.
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