
An Overview of the Development of a Quantum
Computer Simulator

Jonathan Law - lj048

00611905

Supervisors:

Simon Scola

Alex Fedorec

April 2014

Project URL: http://stuweb.cms.gre.ac.uk/~lj048/QuantumSimulator/index.html

Submitted in partial fulfillment of the University of Greenwich’s

BEng (Hons) Software Engineering

Word Count: 14,678

1

Abstract

Since the conception of the Quantum Computer (QC), their potential for greater
magnitudes in speed of processing calculations has been realised by the vast majority of
interested parties. This has led to a recent push in research and development in creating
a stable QC which can perform quantum algorithms.

To aid the creation of a stable and highly available quantum computer, simulators
have been developed as a tool to as the thought processes. This report discusses details
of a project that aims to investigate around the subject area, and produce an application
to allow users to simulate quantum algorithms on a QC.

2

1 ACKNOWLEDGMENTS

1 Acknowledgments

The owner of the project would like to take this opportunity to thank those who assisted
throughout the duration of this project, and contributed to its success.

First, to project supervisors Simon Scola and Alex Fedorec who guided the project owner through
the project’s development. Second, to Kevin McManus who co-ordinated the programme and
helped to structure the year of university. Finally, to friends and family, who supported the
project owner personally, both within and outside of the project.

Also to Hugh Brace. ”Hugh were right.”

3

CONTENTS CONTENTS

Contents

1 Acknowledgments 3

2 List of Tables 6

3 List of Figures 7

4 Introduction 8
4.1 Background Information . 8
4.2 Scope of the Project . 8
4.3 Project Aims & Objectives . 9
4.4 Methodology . 10

5 Literature Review 11
5.1 Potential of Quantum Computers . 11
5.2 Current State of Field . 13
5.3 Gate Model vs Adiabatic Model . 15
5.4 Conclusion . 16

6 Technical Review 17
6.1 Programming Languages Considered . 17

6.1.1 Java . 17
6.1.2 JavaScript . 18
6.1.3 MatLab . 18
6.1.4 Conclusion . 19

6.2 Development Software . 20
6.2.1 EditPlus . 20
6.2.2 Aptana Studio . 20
6.2.3 Cloud 9 . 20
6.2.4 Conclusion . 20

6.3 Back Up Method . 21
6.3.1 Dropbox . 21
6.3.2 University of Greenwich Servers . 21

6.4 HTML5 Canvas vs SVG . 21

7 Legal, Ethical, Social, and Professional Issues 24

8 Existing Product Review 25
8.1 Similar Existing Products . 25
8.2 Evaluation Method . 25
8.3 Evaluation of Existing Products . 26

8.3.1 jQuantum . 26
8.3.2 Quantum Circuit Simulator (Wybiral) 27
8.3.3 Zeno (Federal University of Campina Grande) 27

4

CONTENTS CONTENTS

8.3.4 QCL . 28
8.3.5 QML . 28

8.4 Conclusion . 28

9 Design Documentation 30
9.1 Statement of Requirements . 30

9.1.1 Functional Requirements . 30
9.1.2 Non-Functional Requirements . 30

9.2 Functional Design . 31
9.2.1 Use Case Diagram . 31
9.2.2 Class Diagram . 31

9.3 User Interface Design . 33

10 Implementation Documentation 35
10.1 Prototype One . 35
10.2 Prototype Two . 36
10.3 Prototype Three . 38
10.4 Prototype Four . 39

11 Testing 41
11.1 Manual Testing . 41
11.2 Unit Testing . 41
11.3 Performance Testing . 41

12 Evaluation of Product 44

13 Conclusions 48

14 References 50

15 Appendices 52
15.1 Project Proposal . 52

15.1.1 Overview . 52
15.1.2 Aim . 52
15.1.3 Objectives . 52
15.1.4 Legal, Social, Ethical and Professional 54
15.1.5 Planning . 55
15.1.6 Initial References . 55

15.2 Design Documentation . 58
15.3 Screenshots of Program . 60
15.4 Testing Documentation . 61
15.5 Analysis Documentation . 84

5

LIST OF TABLES

2 List of Tables

List of Tables

1 Manual Test Results. 62
2 Performance Test Run 1-1 Results. 63
3 Performance Test Run 1-2 Results. 67
4 Performance Test Run 1-3 Results. 70
5 Performance Test Run 2-1 Results. 73
6 Performance Test Run 2-2 Results. 77
7 Performance Test Run 2-3 Results. 80
8 Evaluator Analysis. 84

6

LIST OF FIGURES

3 List of Figures

List of Figures

1 Comparison of Shor’s algorithm run on different architectures and number field
sieve (Source: Van Meter and Horsman, 2013) 12

2 Likert Scale results for jQuantum . 27
3 Likert Scale results for Quantum Circuit Simulator (Wybiral) 27
4 Likert Scale results for Zeno (Federal University of Campina Grande) 28
5 Likert Scale results for QCL . 28
6 Use case diagram (version 2) for the proposed application 31
7 Class diagram (version 3) for the proposed application 32
8 Layout design for the proposed application . 33
9 Layout design (with modal) for the proposed application 34
10 Comparison of processing time between Prototype Two and Three 39
11 Example of a JSON representation of a simple circuit. 40
12 MongoDB Record of ”Hadamard” Circuit. 40
13 Passing output log from version one of unit test suite 41
14 Hardware listing of test machine to be used to test application performance . . . 42
15 Detail listing of browser to be used to test application performance 42
16 Performance Testing test circuit . 43
17 Execution times of evaluator against number of logic gates 47
18 Project Proposal . 52
19 Table showing proposed schedule . 56
20 GANTT chart of proposed schedule . 57
21 Use case diagram (version 1) for the proposed application 58
22 Class diagram (version 1) for the proposed application 58
23 Class diagram (version 2) for the proposed application 59
24 Screenshot of prototype version 1 . 60
25 Screenshot of prototype version 2 . 60
26 Screenshot of prototype version 4 . 61
27 Screenshot of prototype version 4 with a modal window 61
28 Manual Test Results . 63
29 Performance Test Run 1-1 Results . 66
30 Performance Test Run 1-2 Results . 69
31 Performance Test Run 1-3 Results . 73
32 Performance Test Run 2-1 Results . 77
33 Performance Test Run 2-2 Results . 80
34 Performance Test Run 2-3 Results . 84
35 Evaluator Analysis . 86

7

4 INTRODUCTION

4 Introduction

4.1 Background Information

Modern computers have been leveraged for their capabilities in terms of instruction processing,
data storage, calculation speed and much more. Computers are capable of completing these
tasks through the usage of bits, which are in a deterministic state of either 0 or 1.

Quantum computers make use of phenomena found in quantum mechanics such as superposition
and entanglement, to allow qubits (quantum bits) to take a state of being simultaneously 0 and
1. Quantum computers use qubits to perform their calculations, which then returns results
which may or may not be deterministic. Due to quantum computers being able to leverage the
usage of qubits, they are capable of performing tasks such as integer factorization and execute
algorithms with several orders of magnitudes increase in execution speed compared to classical
algorithms.

It is for the previously stated reasons that quantum computers are highly desirable. However,
one of the greatest challenges facing the field of quantum computing is quantum decoherence;
superpositions of atoms are highly volatile and are susceptible to decohering at the slightest
interaction with its environment. Decoherence of an atom is an irreversible action, and as a
result needs to be highly controlled in a quantum computer’s environment, lest it be incapable
of maintaining qubits’ and their states.

In WIRED’s interview (2007) with David Deutsch, Deutsch was recorded stating that the next
significant advancement in the field of quantum computing would be the pursued interest of
simulating a quantum computer. Developing algorithms in software will help researchers to
identify and conceptualise the requirements of the hardware. The project outlined in this
report looks at the development of a quantum computer from conception to live roll out of
the system.

4.2 Scope of the Project

The project aims to cover the development of the application from conception, requirements
gathering, design, implementation, testing and deployment. This means providing relevant
documentation at significant milestones, such as design of the system or testing documentation.
The application itself should allow users to input data such as the number of qubits to simulate,
their initial starting state and which quantum logic gates should act upon qubits in a desired
order.

There are several methods or factors to be looked at when evaluating the success of the system.
The developer will be looking at how accurately the system can simulate results from logic gates

8

4.3 Project Aims & Objectives 4 INTRODUCTION

and quantum algorithms, but also how quickly it can perform these algorithms. This is due to
the fact it is only a simulation, not a real quantum system and thus should not be able to match
the speeds predicted for a real quantum system. The expectation is that the simulation shall
be many magnitudes slower than a real system, though the results should be accurate if the
product is to be successful.

The system should be easy to use, and allow the user to quickly set up the circuit to be simulated.
This is especially important in setting up large and complex systems to be simulated, as the
number of logical objects to be managed can become very large. In addition to this, the results
should be clear, and easy to understand, even for novice users.

A feature which may or may not be implemented due to time constraints will be the ability to
store results, and save desired set ups of the system. This feature could be useful to researchers
who would like to perform analytics on the results retrieved, or to go back to previous set ups
to modify or review the set up. As such, this feature will be kept in the middle ranges in terms
of priority for completion as it adds a high amount of conceivable value to the product, but is
not critical in its usability or success.

Another constraint will be the inability for the user to create their own gate. While this may be
a useful feature to the user, and add some future proofing to the system, it is again considered
outside the scope of this system. This is due to the complexity involved, and a lack of vision
for a successful, robust, and usable implementation of this feature.

The project will be deemed successful if it can accurately simulate quantum logic gates acting
on qubits, and quantum algorithms. Another factor to rate the project’s success will be the
speed at which the circuit can be simulated. Greater speeds of evaluation will be considered
more succesful than slower evaluation speeds.

4.3 Project Aims & Objectives

The aim of this project is to develop an application to allow users to simulate a quantum
computer. This involves research into the field of quantum computing to further understand the
field of quantum computing and quantum algorithms, how best to simulate them, and developing
such an application from conception to deployment.

A summary of objectives to be completed can be seen as follows:

• Conduct research on literature to gather insights about the current state of the field and
related fields.

• Evaluate technologies in order to base an informed decision about how best to implement
the application.

• Critically evaluate existing products which achieve the same objectives in order to see how
to improve the field.

• Create design documentation to implement the QC Simulator (covering both GUI design,
and implementation of functionality).

9

4.4 Methodology 4 INTRODUCTION

• Test the application, documenting testing processes, results and changes made to the
system.

• Deploy and evaluate the final product and management of the project, including choice
of methodology, time scheduling, risk analysis, etc.

4.4 Methodology

Evolutionary prototyping allows for regular prototyping of the product, enabling feedback and
increased changeability in the product. Feedback is useful when considering GUIs due to its
nature of being hard to evaluate until it is developed. While design documentation will still
be developed, it is hard to truly experience an interface until it is being used. Evolutionary
prototyping allows the developer to quickly develop a UI, gather feedback and make suitable
changes in a small time frame. It also suits the low manpower and timeliness available for the
project.

The iterative nature of evolutionary prototyping also allows for changes to be made to the system
during development with a greater degree of swiftness when compared to staged development
methodologies such as the Waterfall methodology or the V-Model. This is an important factor
in this project, as there is an exploratory element to this project and a small time frame to
commit to. While the aim and objective of this project is clearly defined, the application to be
developed in order to achieve such objectives have not been fully specified, with several elements
to be decided upon later in development.

Unit testing will be useful as it allows for automated testing, and is suitable to test the product’s
accuracy, as the expected output will be the result of a mathematical function. However
the availability and complexity of integrating unit testing into the project will depend on the
programming language chosen to implement the system. Newer languages will not have had
unit testing libraries built into them as the more popular and defined languages have, but it will
be likely that there is a 3rd party unit testing library available, or failing that, being able to code
in such a way that will return test results, though not strictly a unit test.

10

5 LITERATURE REVIEW

5 Literature Review

5.1 Potential of Quantum Computers

In 1994, an algorithm devised by Peter Shor, which has come to be known as Shor’s Algorithm,
inspired research into whether a quantum computer could be built. Shor’s algorithm, a quantum
algorithm which can only be performed on quantum systems, could efficiently factor natural
numbers and compute discrete logarithms. Lack of an efficient algorithm to compute these has
been the core of the security of public key encryption systems, notably RSA encryption, which is
widely used around the world. Such an algorithm then, if successfully implemented, could break
a vast majority of security protocols implemented in a reasonable time (Bacon and Van Dam,
2010).

Another algorithm which promises vast improvements in magnitudes of execution times when
compared to that of its classical counterpart is Grover’s Algorithm which has been described as
a search algorithm. Though the example of a database is often given when discussing Grover’s
algorithm, it is important to understand that it actually identifies a target within an unstructured
data set. Grover’s algorithm has also been proven to be the best attainable improvement of
performance possible by any quantum algorithm (Arikan, 2003).

While it is widely agreed algorithms such as Shor’s Algorithm will allow for efficiency to the
capabilities of factoring large numbers in polynomial time, Van Meter and Horsman (2013)
warns that it is difficult to discuss the actual prospective performance of a system based purely
on algorithms implemented alone. Other factors such as the physical and logical clock used in
the system, the architecture of the system and the number of qubits available to the system to
name a few.

Van Meter and Horsman go on to note that the architecture and hardware has a dramatic
impact on the viability of a quantum computer. It could be the difference between a useful
proof of concept, to an immediate threat to security systems world wide. Figure 1 illustrates
the difference in time for Shor’s algorithm to complete, depending on the architecture and clock
speed used, also comparing to that of the classical number field sieve.

11

5.1 Potential of Quantum Computers 5 LITERATURE REVIEW

Figure 1: Comparison of Shor’s algorithm run on different architectures and number field
sieve (Source: Van Meter and Horsman, 2013)

On the other side of the coin of decryption, is quantum computer system’s enhanced capabilities
in terms of encryption. Development on systems which rely quantum cryptography which is
said to be a potentially unhackable form of communication has been done by scientists. ID
Quantique, a Swiss firm, has already used quantum cryptography in order to secure transactions
from point-to-point within some institutes.

As previously mentioned, current cryptography relies on the difficulty in factorising integers to
create encryption. Without the correct keys to decipher the encrypted message, the only other
alternative is to attempt to decode the encryption, which takes a significant amount of time on
classical systems.

Quantum computer have the ability to encrypt messages in a different way, using laws of
physics found in the quantum world. The two computers on each end of the point-to-point
communication will generate a shared but secret key which is as long as the message itself, as
opposed to a set character limit in current implementations, will only be used once. First by
the sender to encrypt the message, then by the recipient in order to decrypt the message. In
the most common implementation, prepare and measure, the sender sends photons of light to
the recipient. Photons can assume a number of different states to represent bits. The recipient
then measures the received bit, translates it using the shared key, and measure the result with
the sender.

12

5.2 Current State of Field 5 LITERATURE REVIEW

The security in this system is to capture or measure photons will create a disturbance which can
be detected almost immediately. Hence, there will be a discrepancy in the results between the
two parties if there are any unauthorised members trying to intercept the photons being sent.
If there are too many discrepancies in a given transaction in a message, the involved parties can
assume the line is insecure and cease communication (Mone, 2013).

5.2 Current State of Field

While there is a lot of potential that comes with the usage of quantum computers, it is important
to be able to construct a viable quantum computer, which can stably hold qubits for a reasonable
length of time without decoherence. Different architectures must be explored so that their
advantages and disadvantages can be evaluated, as well as processes or protocols. Once a live
system has been rolled out, security flaws and performance leaks can be addressed, leading to a
more viable machine.

While the potential for realising an efficient algorithm to factorise integers in a reasonable amount
of time has been theorised, it has not seen much groundbreaking work executed in the real world.
IBM reported that they had successfully implemented Shor’s algorithm on a quantum system
and had factorised 15 into its prime factors of 3 and 5 (IBM, 2001). While IBM’s experiment
had been criticised as its use of entanglement had not been demonstrated, other experiments
have since taken place which do show evidence of entanglement (Lu, et al., 2007).

Other issues in implementing quantum computer systems include decoherence; A quantum
computer must be able to complete all of its calculations and instructions before decoherence
changes the state of the qubit irreversibly. Currently, the longest reported record of keeping a
quantum memory state stable at room temperature has been reported at 39 minutes, extending
to three hours at cryogenic temperatures. This record is claimed by an international team who
worked at Simon Fraser University, Canada (BBC, 2013).

Issues in current existing implementations of quantum computers have been noted. In 2010,
a group of hackers announced they had successfully hacked a quantum cryptography system
(similar to the system detailed previously) by blinding the system with a large amount of bright
lights. The group of hackers, who were working with the Swiss firm, ID Quantique, expresses
beliefs that this is not a weakness with quantum cryptography as a concept, but rather the
current state of implementation itself (Mone, 2013).

Many quantum algorithms have been theorised; All of which revolve around the idea of enhancing
the efficiency of previous tasks by several orders of magnitude. Shor’s algorithm can factorise
numbers exponentially faster than the general number sieve, the quickest performing classical
algorithm which achieves the same objective. Grover’s algorithm runs quadratically faster than
its classical pair, which is used to search through an unordered database. While these algorithms
have been mathematically proven to be correct, and widely accepted to be improvement on its
classical counterparts, more algorithms will be theorised as time goes on.

Previously mentioned, it was reported that Deutsch stated that a simulator for a quantum
computer will be the next significant step in advancing the field (WIRED, 2007). Currently, there

13

5.2 Current State of Field 5 LITERATURE REVIEW

are a wide variety of simulators which simulate the lower level circuitry level of the quantum
computer. On this level it is possible to implement quantum algorithms, execute the simulation
and retrieve an outcome.

Another level to simulate would be the particle level, in order to be able to simulate decoherence
and entanglement of photons or implemented atomic level particle. While this would make the
implementation of quantum computers simpler, as we would have the ability to implement an
architecture and simulate its viability, it would require many algorithms that classical computers
would take an exponential time to complete.

D-Wave are currently boasting the first commercially available quantum computer call the
D-Wave Two system (D-Wave, 2014). The D-Wave Two system as advertised on their websites
boasts factors such as ’exploits quantum mechanical effects’ and ’enables quantum algorithms
to solve very hard problems.’ These quantum effects are achieved by chilling a lattice of 512
’tiny superconducting circuits’ to absolute zero.

The first customer, Lockheed Martin, bought the first D-Wave system in 2011 and installed
it in a new ’Quanutum Computation Center’ at the University of Southern California. This
machine was bought at roughly US$10 million (Nature, 2013). The second customer of a
D-Wave system is a collaboration of customers between Google, NASA and the Universities
Space Research Association. Together they have purchased and installed a system in NASA’s
Ames Research Center.

Despite the success enjoyed from large organisations, D-Wave were the victims of skepticism
after the company’s 2007 press event. This was due to their marketing approach with skeptics
claiming D-Wave systems did not really leverage quantum mechanics at all. These problems
arose from the lack of academic publishings being publicly available prior to their press releases,
hence it was difficult to reinforce their claims. However, in 2011, D-Wave published evidence
for the usage of quantum mechanics implemented in its 8-bit chip (Johnson et al, 2011). Other
issues in assessing D-Wave’s systems’ performance involve the lack of measure which to compare
it against. It is reported not even experts are completely sure how to judge it. John Martinis, a
physicist at the University of California has been quoted: ”[D-Wave] do these demonstrations,
and how do you know if it’s any more significant than factoring 15?” (Nature, 2013).

Despite all this, D-Wave has some strong backing and evidence to reinforce their claims of
quantum computing being an improvement on its classical counterpart. Google has published
papers indicating the D-Wave system excelled in terms of artificial intelligence and machine
learning (Neven, et al, 2009). In 2012, Harvard University researchers claimed to be able to use
a D-Wave machine to find the lowest-energy folding configuration for a protein with six amino
acids. Although they did not have enough qubits to code the problem correctly, it is claimed at
13 correct results out of 10,000 runs is still a good turnover (Perdomo-Ortiz, et al., 2012).

Quantum programming languages have been implemented, though the hardware is not currently
in place to support it (NewScientist, 2013). For example, Quipper is implemented on the
basis that it runs on a gate model machine, as opposed the existing adiabatic models. These
languages are currently executed on a simulation of a quantum computer. Developing software
for quantum computers may reveal insights or knowledge which may help to shape or design the

14

5.3 Gate Model vs Adiabatic Model 5 LITERATURE REVIEW

physical implementation or the hardware architecture of the quantum computer itself.

5.3 Gate Model vs Adiabatic Model

The two leading models in regards to the architecture of quantum computers are the gate
and adiabatic model. Both have advantages and disadvantages which should be taken into
consideration before developing the simulator application in question.

The gate model is widely used and documented due to its ease of communication and use.
The gate model is highly graphical with functionality being displayed as graphical gates, which
represent a transformation matrix to be applied. They are placed onto qubits to be operated
upon. Hence, quantum algorithms in the gate model can be documented in a quantum circuit
which contains the qubits initial starting state, and the gates or functions to be operated on
specific qubits in order to carry out the algorithm.

It also has strong foundations in its logic, as opposed to its hardware. Gate model algorithms
have been theorised mainly with the intention of factorisation, teleportation or entanglement.
To support this, it also has support from fully fledged theories of error corrections.

However, the gate model has weak hardware basis. Gate models are highly susceptible to
decoherence as different energy levels are required to represent 0 and 1. This is problematic as
users of a physical gate model must then take care to ensure the phase coherence between the
two energy levels. The phase coherence must be maintained tightly in order for the system to
operate.

For this reason, it is difficult to create elaborate gate model systems as the complexity of
maintaining a stable state for all qubits involved becomes exponentially more difficult with each
qubit introduced. With each new qubit there is the difficulty of maintaining the phase coherence
between all qubits within the system.

D-Wave claim the adiabatic model that they have adopted in their systems have the potential
to scale much more rapidly in terms of hardware, as well as being more applicable to industry.
Colin Williams from D-Wave, explains gate model systems tend to focus on the stabilisation of
qubits at a slow rate, giving the example of one extra perfect qubit per year. However, Williams
claims that the number of qubits used within their D-Wave systems have been doubling each
year, dwarfing the growth rate of gate model systems. He goes on to draw comparisons against
this growth rate and Moore’s Law which concerns itself with classical computers (D-Wave,
2013).

This is due to the lack of complexity involved with decoherence. 0 and 1 states are not encoded
through use of energy levels in the adiabatic model. The system is entirely encoded as the
ground state of the Hamiltonian and thus decoherence has a much lesser affect on the adiabatic
model.

15

5.4 Conclusion 5 LITERATURE REVIEW

5.4 Conclusion

Comparing between gate model and adiabatic model, it would seem the gate model lends itself
further to the purposes of simulation. The strong graphical basis of its notation allows for a
means of simple input to the application without a strong background knowledge of the workings
of the system required. This allows users with less academic knowledge in the field, to be able to
construct a circuit using modular gates which can be chained together to create a system.

In addition, the gate model has strong theoretical support with named algorithms theorised
for deployment and implementation on gate model quantum computers, whereas adiabatic
algorithms can vary depending on their specific implementation, as well as the problem to
be solved. As such, there is a greater community and academic gathering when discussing gate
model circuits as opposed to adiabatic models.

Gate models are also simpler to expand or build upon, due to the modular nature of the logic
gates in use. This allows ideas and concepts to be explained in the form of applying logic gates
to a system. Each logic gate performs a function, which can be chained together to create a
circuit. These logic gates are applied in order, transforming the overall system based on the
gate’s function, then finally returning a final state.

The downside of the gate model is its difficult implementation in hardware, due to quantum
phenomena such as decoherence. As the product will be a simulated system on a classical
computer, decoherence is not an issue in the simulation and will not be accounted for.

As a result of the findings from this research, for the purposes of the simulation application a
gate model quantum system shall be used as the model of choice.

16

6 TECHNICAL REVIEW

6 Technical Review

6.1 Programming Languages Considered

6.1.1 Java

Java brings many advantages, especially as it is the language which the developer believes he
is most knowledgeable in, meaning there will be little to no learning required to implement
the project. As with most modern programming languages, Java has strong object oriented
programming capabilities; a programming style which the developer is comfortable in working
with.

JUnit is a widely supported unit testing library available for Java; so heavily supported it is often
bundled with IDEs natively. If not bundled natively, the installation process is often managed by
the IDE through native installation tools.

Java also has the support of large corporations such as Google and IBM, and strong IDEs which
have free of charge options such as Eclipse. Java is currently very widely used and does not
look to be losing support soon, hence the risk of the language becoming obsolete and unused is
not likely in the near future. Java is platform free, which adds to its popularity and wide usage.
Once Java is installed on a machine, it will be capable of executing Java programs, independent
of the platform.

In terms of deployment, it is possible to compile the application into an executable JAR file
which users can obtain and execute locally. This has implications on the method of distribution
though. If developer wishes for the application to be widely available, considerations may involve
uploading an install package to a file hosting service or through physical storage means such as
removable storage devices.

Alternatively, the application can be written as an applet, which means it can be embedded as
part of a web page. However, the two are not interchangeable meaning it is not possible to write
a Java application as a desktop application, then run it as an applet later in its development. It
must either be developed from the beginning for its intended use, or undergo code base changes
to support its new deployment realisation.

Downsides to Java as the choice programming language involve Java’s lack of support of strong
mathematical functions which are the core of quantum computing, and the necessity to install
Java’s library before execution of Java programs is possible. On top of this, Java must be
updated if the target application uses a higher version of Java than installed on the client’s
machine. This again increases the amount of friction required for its use. Java’s lack of strong
mathematical functions can be supplemented through the use of libraries.

17

6.1 Programming Languages Considered 6 TECHNICAL REVIEW

The requirement of a Java installation cannot be mitigated and adds friction to the system’s
usage. A user who does not have the correct version of Java installed will be notified, and the
user will be prompted to upgrade before usage of the program is possible.

6.1.2 JavaScript

JavaScript is supported by widely used web browsers such as Google Chrome, Mozilla Firefox or
Safari and further extends to browsers aimed at smaller devices such as Android Browser and
iOS Safari. This causes minimal friction on the user’s side as there is no installation of the
application required.

A web server will be required to host the web page and serve the client when requested. This
can be the cause of downtime if the remote machine itself encounters problems such as hardware
failure, or networking issues. There will need to be considerations into how to deploy the web
server, which can be affected by the programming language of choice. The clients will also need
to access the application through a URL which may add friction if the URL is vague, difficult to
remember or difficult to input.

Users can configure their web browser to enable or disable JavaScript execution so it is possible
a user may not wish to enable to JavaScript and block the execution of the application. This
can be offset by displaying a message requesting the user to enable JavaScript. Most users
will generally comply with this request if an explanation can be given as to why it is needed.
However, the decision ultimately lies with the client.

JavaScript can be considered to be an extremely flexible language supporting object oriented,
imperative and functional programming. Although, it lacks support of a widely popular IDE,
to the point where debugging tools have been deferred to the responsibility of browsers for
provision, such as Mozilla Firefox’s Firebug extension or Google Chrome’s native Developer
Tools set.

In addition to this, a framework for unit testing has not been decisively selected by either the
community or the developers, with QUnit looking to be the most influential, boasting claims that
it is the unit test runner for jQuery followed by FireUnit, part of the FireBug extension.

While JavaScript does not natively support the use of matrices and complex numbers, it is
possible to supplement this issue with the use of libraries. This simply requires a download and
a call to import them. Alternatively, it is possible to import a library by referencing an online
location where the library is hosted. While this eases the import of libraries, it is important to
consider the affects of the location of the library being moved, removed or otherwise inaccessible.
Downloading the library means there will always be a local version to be referenced.

6.1.3 MatLab

To create an application in MatLab, the developer must build function and script files which
are chained together to create a usable application, optionally creating a GUI pane to aid

18

6.1 Programming Languages Considered 6 TECHNICAL REVIEW

the users accessibility to these functions. The GUI pane is also ideal for displaying graphical
representation of the data involved. MatLab uses a high-level language which is based on object
oriented principles, much like Java or C#.

MatLab’s core functionality revolves around its heavy focus on strong mathematical capabilities
such as functions for linear algebra, statistics etc as well as built-in graphics allowing for easy
representation of graphical data. Features such as these makes it ideal for the application to be
produced which relies heavily on the usage of matrices and complex numbers without the use
of external libraries to extend the capabilities of this language.

It is also capable of producing unit tests similar to other languages, in that you create a set of
tests which aim to test the output of functions when given certain inputs. MatLab makes use
of its own native library set to handle unit testing as opposed to other languages which defer to
3rd party libraries.

Break points for testing and debugging purposes are enabled in MatLab. Debugging is also
supported through MatLab’s IDE with the usage of setting break points then being able to
manually step through the code to examine the values of variables and the functions being
performed within the application. This allows the developer to understand what the current
state of the application is, and help to identify why it may be behaving in an unintended
manner.

However, accessibility will be considerably more limited than previously mentioned programming
languages. MatLab applications cannot be hosted on a web page and so must be downloaded
and executed locally on the user’s own environment. In addition, MatLab applications cannot be
executed without MatLab installed which cannot be attained freely. This causes a high amount
of friction when considering usage.

6.1.4 Conclusion

JavaScript will be used as the language of choice, as it provides high levels of availability and the
lowest user end friction for its golden path of usage. In addition, a web server will be supplied
by the University of Greenwich to host and serve end users.

While a Java applet could be delivered in a similar process, the user will still require to have the
right level of Java installed, which can cause high amounts of friction upon set up. Especially
as some users could view this as an unforeseen friction which can unsettle users.

Although MatLab provides some strong mathematical basis as a programming language, this
weakness of JavaScript can be supplemented with the use of external libraries which will also
reduce the amount of implementation required of the developer. The high amount of friction
provided by MatLab cannot be ignored, and the developer’s personal skill level in MatLab is low
which is a contributing factor to its rejection as a choice of language.

19

6.2 Development Software 6 TECHNICAL REVIEW

6.2 Development Software

6.2.1 EditPlus

EditPlus is a text editor which offers FTP/SFTP capabilities, allowing changes to be made
directly on the server. This removes the arduous cycle of working locally, uploading and testing
by replacing it with the cycle of modify and test. This speeds up development and reduces the
likelihood of errors. It also offers colour coding of code for ease of view and supports indentation
for readability.

However, as a text editor it does not provide the wholeness of functionality fuller IDEs often
provide such as refactoring of code, auto-completions, and preview of code.

6.2.2 Aptana Studio

As a heavier weight IDE, Aptana development works by creating a local project area (which
can be cloned from a web server’s directory) which can then synchronize with a web server
through an FTP/SFTP connection. As an IDE, it also supports refactoring, auto-completion
with suggestions and preview of code.

Upon quick evaluation, the synchronisation is only supported with text based files, multimedia
content appears to require a manual push to server. In addition, an error occurred during cloning
of the University of Greenwich’s server, reporting a stack overflow error in its attempt to do
so.

6.2.3 Cloud 9

Cloud 9 offers similar functionality to Aptana in that it too is an IDE aimed at web development.
Being a web application, without the need to locally install files is its main advantage over other
software. It works directly from the FTP/SFTP server with the requirement of creating a local
area, although this does not mean it is copying the files to its own servers.

Similar to Aptana however, it reports an unknown error in its attempt to clone the University of
Greenwich’s web server. Once past the initial error, it appears the workspace has successfully
cloned the server’s file system and offers a fully functional FTP/SFTP connection to work
directly on the files.

In addition, it offers support to GitHub and Bitbucket which may be used as a repository for the
usage of backing up files, versioning and managing change sets.

6.2.4 Conclusion

To conclude, Cloud 9 will be the software of choice to drive the implementation of the web
application. Reasons for this decision include the functionality offered by an IDE such as colour

20

6.3 Back Up Method 6 TECHNICAL REVIEW

coded code syntax, auto-completions and suggestions, as well as its FTP/SFTP connection
capability. In addition, as a web application, it offers high levels of portability with low friction
set up from machine to machine.

6.3 Back Up Method

6.3.1 Dropbox

Dropbox can be interfaced through a web application or a locally installed application on an end
user machine. Looking at the locally installed application, Dropbox offers cloud based storage
which will synchronise the file system in a given directory on the local system, to the cloud, with
either a single user, or multiple white listed users. Navigating to the web application will allow
users to view a change list showing the time and user who committed the last change.

Dropbox offers a minimum 2GB of storage free of charge, with the capability to upgrade to a
subscription service allowing for more space and more users (Dropbox, 2014). However, change
sets are not leveraged and so versioning can become difficult across a range of files.

As part of these findings, it is concluded Dropbox will be useful to back up the written essay
and documentation surrounding the project, but will not be relied on to control the application
itself.

6.3.2 University of Greenwich Servers

As the developer is a student of the University of Greenwich, a system to store files, and a
web server to serve files to clients is available for usage. Students of the CMS department are
allocated 250MB on the Unix system, which can be accessed via FTP/SFTP, as well as access
through remote terminal or virtualisation.

It is stated the servers are under maintenance from 7am - 9am on Tuesdays (University of
Greenwich, 2013). It is further stated this is when maintenance and essential updates are
performed, and this is assumed to extend to include back up of current file storage.

In terms of file management, while the servers do not offer versioning, change sets or builds, it
is a service that requires no additional cost in resources for usage, and provides a web server
which will allow the developer to serve the produced application to the web. In addition, the
University of Greenwich will be liable for any downtime or data loss within their system. This
presents a transfer of risk, lowering the risk for the developer of the project. As such, the system
will be employed for usage throughout the project.

6.4 HTML5 Canvas vs SVG

HTML5 Canvas and SVG are technologies which handle the drawing of dynamic graphical
elements on web pages, often through the use of JavaScript. Canvas and SVG handle their

21

6.4 HTML5 Canvas vs SVG 6 TECHNICAL REVIEW

drawing in different methods which brings about different advantages and disadvantages in their
usage. This is an important factor in their success; as both are powerful but better suited to
different applications as neither technology is superior all around.

HTML5 describes Canvas as a web page embedded element which ”provides scripts with a
resolution-dependent bitmap canvas, which can be used for rendering graphs, game graphics,
art, or other visual images on the fly” (W3C, 2014). This description retains the essence of
enabling the capabilities of creating graphical elements dynamically.

Typical implementation of HTML5 canvas element is to create a HTML5 canvas element and
through JavaScript it is possible to use the Canvas API to manipulate pixels within the canvas
itself. The API has been developed to support utility functions such as drawing lines, shapes,
rendering text as well as rendering images onto the canvas. In addition, it is possible to add
event listeners to the canvas which can then call functions to be performed. The graphical
representation is abstracted away under the canvas element, which holds the event listener. The
developer must then implement a way of translating the event which occurred on the canvas,
to the user’s intention.

SVG describes SVG (1.1 Second Edition) as ”a language for describing two-dimensional graphics
in XML [XML10]” (W3C, 2011). SVG allows creation of vector graphic shapes, images and text
which can be animated. As SVG elements are described through XML, it is possible for browsers
to parse the XML, then create objects embedded in the DOM to display the graphical element.
Otherwise, it is possible to save the image in an image editing software as an SVG file which
can be embedded into the web page using the tag. As the graphic becomes embedded
into the mark up itself, it retains robust capabilities available to other elements. This includes
attaching an ID attribute to reference it through the DOM, applying CSS styles to elements,
and adding event listeners.

Both Canvas and SVG are widely compatible with a range of browsers, supported by popular
desktop browsers like Firefox and Chrome, as well as browsers designed for physically smaller
devices such as iOS Safari and Android Browser. However, SVG has made further optimisations
for mobile devices. The W3C recommendation for SVG Mobile is to use a version of SVG called
SVG Tiny (1.2). Canvas has not made differentiating versions intended for optimisations on
other devices.

As SVG uses XML in order to describe a set of vectors to create an image or a graphic, SVG
elements are highly scalable. They can be resized with little loss of quality, as the vectors are
not coupled to the positioning of pixels themselves. Instead it draws the image from scratch
on each resize. Canvas relies on manipulating pixels directly, which means on a resize, it has
high loss of quality due to the attempt in positioning pixels relative to one another, without
accounting for space generated or lost in a resize.

With the gained advantage of scaling well with resized dimensions, comes loss of efficiency
in terms of resource usage. Using XML to describe an image, which is then embedded into
the DOM for future manipulation may result in slower rendering of images when comparing
to Canvas’ method of manipulating pixels directly. This cost is further exacerbated when a
large portion of the elements must be redrawn. This is due to SVG’s need to modify the XML

22

6.4 HTML5 Canvas vs SVG 6 TECHNICAL REVIEW

structure, and reapply it to the DOM before being rendered, whereas Canvas can begin rendering
almost immediately.

This loss of efficiency may be offset by the amount that must be rendered on an update. As
SVG elements can act independently of one another, updating a single SVG element in a large
set of elements may be quick to process. In the case of Canvas, the whole canvas is treated as
a single image, and to update any part of this image, requires an entire redraw of the canvas
element. If the graphic to be updated can be isolated and identified it may be more prudent to
use SVG. In the case where it is expected a large amount of the image will be updated on a very
frequent basis, Canvas will be better suited to perform the large amount of quick updates.

Looking at Canvas, as the contents of the image itself is abstracted away from the DOM, any
accessibility text or meta-data can only be bound to the canvas element itself, rather than its
contents. In addition, the canvas element itself does not specify any additional attributes to
support accessibility such as title or descriptions. While the use of a <noscript> tag may aid
in the cases where JavaScript is not enabled on the client’s browser, it does not aid in cases of
alternative usage such as those who are hard of hearing or sight.

After reviewing the advantages of both technologies, Canvas and SVG, it is decided SVG will
be used to approach the graphical concerns of development. The ease of binding events to
graphical objects plays the largest factor in its choice, with the lack of large amounts of frequent
updates also being a consideration in its choice. From here, it may be useful to begin research
into libraries which aim to ease the implementation of SVG with the ideals of simplifying the
implementation as much as possible.

23

7 LEGAL, ETHICAL, SOCIAL, AND PROFESSIONAL ISSUES

7 Legal, Ethical, Social, and Professional Issues

The application to be produced does not currently have any design or implementation decisions
which requirement capture of user’s personal data. This alleviates many issues such as conforming
to the Data Protection Act 1998, which touches upon many aspects such as security, allowing
user control over data, feedback systems, and relevancy and accuracy of data obtained.

Though copyright would be a bigger concern if the programming language of choice would be
JavaScript, it is still of concern in the usage of the other mentioned languages. To prevent
others from claiming the application as their own, an initial and low effort mitigation would
be to add a visual copyright disclaimer to the product which would state the ownership of the
application. This would protect the rightful owner from legal contact and could be used against
a party accused of theft.

Professionally, the results from the simulator should be accurate, which relies on accurate values
being obtained and used during development. This means retrieving details about mathematics
at the core of quantum computing from a credible and reliable source, in both the functionality
of the gates and the application of the transformation.

Additionally, it would be prudent to ensure the application has an appropriate amount of stability.
A highly unstable application may frustrate users, and perhaps interfere with the usage of other
applications. For example, if it were deployed as a web application and it were to critically fail
in the browser, it may affect other tabs or perhaps the whole browser in some cases.

Allowing users to input data for usage will have both security and ethical implications. There
will need to be considerations into validation of the data to ensure it is not malicious to the
program, as well as considerations into the suitability of the data to be entered. To take the
example of a text string which may be taken from a user as input, then later displayed in the
application, there will need to be considerations on how to avoid explicit or offensive material
being displayed to other users. This may be an automated or manual process.

If a means of contact is available through the application, through an implemented process or
visible contact details, then a process should be declared and visible to the user. This should
address what details are needed, what they are needed for, in addition to what details will be
stored. This touches upon the Data Protection Act, and as such the developer will attempt to
avoid the usage of personal data where possible.

While outside of the scope of this project, if bugs will be fixed, then a controlled method of
deploying fix patches will be necessary. This means keeping a backlog previous versions, should
rolling back be necessary (as well as keeping them available for download) as well as keeping a
maintained list of changes in each patch so the user understands what has changed.

24

8 EXISTING PRODUCT REVIEW

8 Existing Product Review

8.1 Similar Existing Products

The main purpose of the application to be developed is to allow the user to build and simulate
quantum circuits; Outside of this, any features are supportive and while may add value, is not
a critical success factor. As the method of delivery or implementation method has not been
finalised, it would also be useful to look at varying implementations of applications which allow
for the simulation of quantum circuitry.

The applications to be evaluated are as follows:

• jQuantum (jQuantum, 2010)

• Quantum Circuit Simulator (Wybiral, 2013)

• Zeno (Federal University of Campina Grande)

It may also be wise to evaluate quantum programming languages in their usage. It is important to
understand quantum programming languages are in fact, not programming languages designed
for execution on a quantum machine. Instead, they are languages which simulate common
quantum functions into a library. It is also important to understand that these languages are
often used for exploratory and experimental purposes as opposed to the intent of creating a
functional program.

The quantum programming languages to be evaluated are as follows:

• QCL (Ömer, 2014)

• QML (University of Nottingham, 2014)

8.2 Evaluation Method

In evaluating existing products, using Likert Scale as an evaluation technique will provide a
quantitative result against factors of the evaluators choosing. Therefore, factors to be evaluated
will derive from a subset of ISO/IEC 9126, as it is believed not all items are relevant to this
type of application. The result can be analysed mathematically, hence we can provide an overall
average for each product, based on its scoring on each category.

In addition, features identified in each product, which the evaluator believes adds high value
will be noted and aggregated for consideration for implementation in the application to be
developed. In the same vein, features which are not present in products which would increase
its effectiveness will be noted for the same reason.

25

8.3 Evaluation of Existing Products 8 EXISTING PRODUCT REVIEW

The ISO/IEC 9126 factors to use in the evaluation of the applications are as follows:

• Functionality

– Suitability

– Accuracy

• Usability

– Learnability

– Attractiveness

• Efficiency

– Time Behaviour

When evaluating the quantum programming languages are as follows:

• Functionality

– Suitability

– Accuracy

• Usability

– Learnability

– Understandability

8.3 Evaluation of Existing Products

8.3.1 jQuantum

This product is a Java application, and although alternative methods of accessibility were
provided such as applets to enable in browser usage, these alternatives appear to be non-functional
and unsupported. As such, a download of the application was a necessity.

The interface is somewhat cluttered and difficult to understand, with little in the way of prompts
or feedback to aid the user in learning the application. The user must first initialise the
qubits within both the x and y registers, which then updates graphical interface with a visual
representation of the initialised qubits. In order to change the starting states of the qubits, or
add gates to the circuit, the user must click a button with the appropriate control which brings
up a text form to fill in. For example, to place a hadamard gate on qubit 4 of the x register,
the user must click the hadamard gate and enter ’4’ into the x field.

To measure the output of the circuit, the user can move along the gate sequentially using the
arrows to move step by step through each row of gates. The results display themselves as
squares which are colour coded depending on the value of the complex number z, which can be
mapped on a colour map of a complex plane.

26

8.3 Evaluation of Existing Products 8 EXISTING PRODUCT REVIEW

This process is lengthy, accident prone and unintuitive to the user as it abstracts away the direct
control of the circuit from the user, as well as providing difficult to understand controls and
feedback.

Functionality Suitability 3.0
Accuracy 5.0

Usability Learnability 2.0
Attractiveness 2.0

Efficiency Time Behaviour 2.0
Overall 2.8

Figure 2: Likert Scale results for jQuantum

8.3.2 Quantum Circuit Simulator (Wybiral)

This product is a JavaScript application, hence installation was not a necessary phase. It provides
an easy to learn and use UI, with quantum gates marked by a symbol, and additional information
on hover. The menu abstracts less used functionality such as importing and exporting of existing
circuit set ups, or modifying the current set up. Draw backs to this application is the limited
number of gates you can apply in a single circuit, as well as the limited number of qubits (only
9 per circuit).

Functionality Suitability 3.0
Accuracy 5.0

Usability Learnability 4.0
Attractiveness 4.0

Efficiency Time Behaviour 5.0
Overall 4.2

Figure 3: Likert Scale results for Quantum Circuit Simulator (Wybiral)

8.3.3 Zeno (Federal University of Campina Grande)

Implemented with Java, it does require an installation but the application itself is easy to use and
feature rich, similar to Wybiral’s Quantum Circuit Simulator. However, much of the commmonly
used controls such as selecting quantum gates are hidden away which adds extra time in changing
and setting up a circuit. In addition, a gate is placed one at a time, instead of multiple gates per
selection. To its advantage, it allows for an unlimited number of qubits and spaces for quantum
gates to be allocated, though these settings must be pre-specified and the user must begin again
if the settings are incorrect.

27

8.4 Conclusion 8 EXISTING PRODUCT REVIEW

Functionality Suitability 5.0
Accuracy 5.0

Usability Learnability 4.0
Attractiveness 3.0

Efficiency Time Behaviour 5.0
Overall 4.4

Figure 4: Likert Scale results for Zeno (Federal University of Campina Grande)

8.3.4 QCL

As a programming language, it is considerably more difficult to learn and use than a produced
application. In addition, there is little in the way of support and documentation to aid the user
in the usage of the language. The evaluator of the product struggled to produce anything of
value with QCL.

It is possible once the user is learned, they may be capable of producing compiled algorithms
of great value. The inclusion of programmable functions allows for flexible and reusble parts of
code. In addition, QCL allows for the inspection quantum machine during the execution of the
program.

Functionality Suitability 4.0
Accuracy 5.0

Usability Learnability 1.0
Understandability 1.0

Overall 2.75

Figure 5: Likert Scale results for QCL

8.3.5 QML

Like QCL, QML is a compiler for the programming lanugage Haskell, which creates high amount
of friction in its usage as it becomes more difficult for a user to understand its usage. The low
amount of documentation not only obscures the potential of the technology in its value and
usage, but frustrated the evaluator to the point of aborting the attempt of the installation. As
such, QML will ultimately not be considered in its evaluation, but the experience of the difficult
install and minimal learnability of the technology will be drawn upon.

8.4 Conclusion

Accuracy played a highly important factor throughout all applications reviewed; understandably
so as the application would be of little use if the results gathered from a simulation were
inaccurate. While the other factors examined also affected its level of quality as a product, they

28

8.4 Conclusion 8 EXISTING PRODUCT REVIEW

were less critical to the application on the whole. As such, other factors amongst the reviewed
applications had a greater variety and range in its perceived ratings. From this, it is important
to take home the necessity of developing an accurate application.

jQuantum is a powerful tool which provides a lot of feedback and has the potential to simulate a
large system. However, timeliness is an issue with this application, as the interface is unintuitive
and difficult to view. This is further exacerbated by the difficulty of finding the intended tool
through the cluttered interface. The evaluation of the circuit is difficult to understand with the
colour coded system.

Wybiral’s Quantum Circuit Simulator is extremely easy to use and learn. Commonly used tools
were exposed at its lowest level. For example, all the quantum gates were available to select
immediately. Less commonly used tools, such as import and export of data, were abstracted
away into sub-menus. Finally, the process of setting up of a quantum circuit was streamlined in
terms of time due to the ability to re-use the last tool, shortcut keys and changes in the circuits
properties did not reset the state of the circuit completely.

The Zeno quantum circuit simulator is similar to Wybiral’s in many aspects, but differed on
few key aspects. Its lack of tool reuse made the set up of circuits less timely, and the reset of
circuit state if any properties were to change. However, it had the potential to be a much more
powerful simulator as it allowed the user to specify the number of qubits and spaces to allocate
quantum gates to, whereas Wybiral’s was limited in both of these regards.

Both quantum programming languages were difficult to install and use, due to the minimal
documentation and support available to the user. The lack of a graphical interface also
heightened the difficulty, and there is little in the way of user feedback and discovery of
features.

Strong features to take into consideration during development will be the accuracy of the
simulation, size of the simulation (in both qubits and quantum gates), the ease of the circuitry
set up, and the abstraction of tools to appropriate levels. It will also be important to consider
the difficulty encountered in the attempt of evaluating quantum programming languages.

29

9 DESIGN DOCUMENTATION

9 Design Documentation

9.1 Statement of Requirements

Requirements the product aims to achieve, in terms of both functional and non-functional
behaviours or constraints will be detailed here. Requirements have been prioritised and grouped
using the MoSCoW method, categorising into Must have, Should have, Could have, Won’t
have.

9.1.1 Functional Requirements

Must have:

• Allow users to set up a quantum circuit, using quantum wires and quantum gates

• Allow users to alter initial state of qubits

• Evaluate a given quantum circuit, returning probabilistic values

Should have:

• Allow users to adjust properties of a circuit, such as number of quantum wires and steps
to evaluate

• Display of time taken to perform evaluation

Could have:

• Export of current quantum circuit set up

• Import of a pre-defined quantum circuit set up

Won’t have:

• Creation of custom quantum gate

• Bug report feature

9.1.2 Non-Functional Requirements

Should have:

• Declaration of external libraries used

• Hyperlinks to home page or reference page of external libraries used

30

9.2 Functional Design 9 DESIGN DOCUMENTATION

• Prompts to feedback to user about the system

• Warn users of actions which are irreversable

9.2 Functional Design

9.2.1 Use Case Diagram

Figure 6: Use case diagram (version 2) for the proposed application

There is only one stereotype of user within this system named User, and it is expected the only
real use case is to Simulate QC (quantum computer), however doing this requires Set up
QC (quantum computer) which the user may optionally choose to either Import or Export
a set up. The user may also choose to download or upload their circuit during the usage of
the application.

9.2.2 Class Diagram

Figure 7 shows the diagram which has been taken into the development phase and will guide
the implementation. Earlier versions of class diagrams developed can be seen in the Appendices.
This should allow the developer the quickly identify the objects required, their attributes and
the expected functions from each object.

31

9.2 Functional Design 9 DESIGN DOCUMENTATION

Figure 7: Class diagram (version 3) for the proposed application

32

9.3 User Interface Design 9 DESIGN DOCUMENTATION

This design attempts to create highly cohesive components which work together to create a
working application. The user interacts either with the Main or the Painter class, depending
on whether the DOM or the graphical circuit was accessed. Both classes must communicate
through the Controller to access specific function calls such as evaluating the circuit, or adding
a gate to a step.

A design which is highly cohesive should aid factorisation of the code base, maintainability and
testability. In this example, it is possible to construct a circuit, modify the set up and add gates
to the system, then finally evaluate the system without the need of coupling with a graphical
interface. This allows us to create unit tests to test the accuracy of the evaluator.

9.3 User Interface Design

Figure 8: Layout design for the proposed application

33

9.3 User Interface Design 9 DESIGN DOCUMENTATION

Figure 9: Layout design (with modal) for the proposed application

The user’s main purpose of using this application will be to set up a quantum circuit, which will
then be simulated and return results. The majority of the screen allocation should revolve mainly
around the view on the quantum circuit, and enough space to comfortably understand the results
returned. Other space allocated will be for the selection of the quantum gates which should be
large enough so the user understands at all times which tool has been selected. Finally, there
will be a menu bar which will give access to additional functions and adjustment of properties,
but as these are expected to have a low frequency of use, space allocation will be less of a
priority.

Usage of modal windows also aids in this abstraction of information, as it hides away views until
the user requests them. This allows for features which require a large amount of space to display
to be a part of the system without cluttering the main UI, by hiding and showing the view when
it is needed.

The elements described have been incorporated into the layout design found in Figure 8. Should
additional menu buttons or sub menus be required, they may be appended to the already existing
menu bar without the need for redesign, as this design captures the essence of the layout.

34

10 IMPLEMENTATION DOCUMENTATION

10 Implementation Documentation

10.1 Prototype One

The first version dealt mainly with the user interface. This involved the usage of small amounts
of HTML and CSS in order to layout and style the web page correctly, as well as using JavaScript
to draw the graphical elements of the circuit and toolbox.

Initially, the developer used JavaScript to draw directly directly onto canvas elements embedded
within the page. This worked well for the period of time as the developer had managed to
graphically draw a toolbox and implemented functions which allowed users to select tools from
the toolbox itself. This required the developer to capture the position of the mouse on the
canvas on the click event, and transpose the co-ordinates of the click to the graphical element
being seen. For example, to select the first gate in the toolbox, the click event would have been
somewhere between 1-40 on the X-axis and 1-40 on the Y-axis which the developer would then
translate into being the first tool in the row of tools.

While this was arduous, it worked for a time as it was simplified by the static nature of the
toolbox itself. Converting co-ordinates to functions was simpler on the toolbox as the elements
within the toolbox did not move. This meant a range could be specified, and a function call
could be derived from this. The difficulty arose when implementing the circuit itself. Within
the circuit, there were several differing elements that could be clicked on, such as the qubits
themselves in order to change the initial state, the wire associated with the qubits to place a
gate on, or a gate to replace with a new one. The dynamic nature of the circuit complicated
the handling of the click events as it was difficult to understand what element was being clicked
on based on the co-ordinates of the clicking.

This drew the developer to halt the implementation momentarily as the handling of graphics
on a canvas was becoming complex, arduous and frustrating. This prompted some research
into the technical aspects of graphical interface development, as it was certain there was a
simpler approach to this issue. This research then took the developer into reading discussions
between two leading technologies for displaying and manipulating dynamic graphical elements
on a browser; HTML5 Canvas and SVG. After some research, the developer decided to proceed
using SVG, for the benefits of being able to bind events to the elements themselves, abstracting
the need for translating click co-ordinates.

This research also extended into looking at libraries which aimed to further abstract and simplify
the workings of SVG creation. The result of this research was to use Raphael to handle the
drawing. Working with Raphael did ease the drawing of the graphics on the developer’s side
but the developer still struggled to get to grips with the concepts behind working with graphics.
For example, to begin with, the developer simply bound on-click events to every element within

35

10.2 Prototype Two 10 IMPLEMENTATION DOCUMENTATION

a graphic. This included elements such as the outlines of gates, the background, the lettering,
etc.

A problem arose when the user was unable to place a logic gate onto the circuit, due to the
placement of another gate in its place. The source of this problem was due to the layering of
graphical objects. When a gate was placed on top of a wire within the circuit, the gate took
priority over the wire when clicked. Since the gate did not have a click function, the function
to replace the gate was not called. One solution was to bind the gate’s graphical elements with
the same function as the wire in order for the function to be called on click.

This quickly became lengthy and repetitive. To remedy this, the developer stopped development
for a period of time and looked to some online tutorials and examples, and consulting the
documentation in order to discover the most effective way of dealing with binding functions
to events concerning graphical elements. The results of this was to declare the function to be
called on the event’s occurrence separately, then to group up all similar elements together into
a single logical object before binding a function to be called on the event occurrence to the
group.

As a result of this, the circuit became much more flexible in its usage as users could click the
area surrounding the wire to place a gate, even if a previous gate had been placed on top.

10.2 Prototype Two

With the completion of the graphical interface, allowing the user to set up a circuit to be
simulated, prototype two oversaw the implementation and testing of the algorithms used to
simulate the circuit generated by the user. This was not immediately successful as the first
implementation of the algorithm did not consider correctly the whole range of the system to be
simulated.

The first attempt at implementing the algorithm ran as such:

• Gather the qubits and set initial state as specified by user input

• Collect all the gates in the order of earliest execution to the latest

• Iterate through the list of gates, applying the matrix transformation on the specific qubit

• Gather the possible output states, derived from the number of qubits within the system
(length of 2n where n is the number of qubits)

• Iterate through the list of possible states, and multiply each qubit’s respective amplitude
to find the probability

• Display all possibilities with the probability of occurrence

This worked well for single qubit gates, however it did not correctly take into account gates
which extended over more than one qubit. In addition, some gates were hard coded such as
the Swap gate. This took the developer to research into existing algorithms. This took the
developer to implementing an algorithm as outlined in Lee Spector’s book Automatic Quantum

36

10.2 Prototype Two 10 IMPLEMENTATION DOCUMENTATION

Computer Programming: A Genetic Programming Approach (2006). This algorithm took into
consideration quantum logic gates which operated on multiple qubits. The algorithm is as
follows:

• Begin timer

• Gather all possible states, derived from the number of qubits within the system (length of
2n where n is the number of qubits)

• Assign probability of each state independently, derived from the initial set up of the system
by the user

• Collect all the gates in the order of earliest execution to the latest

• Iterate through the list of gates, doing the following for each gate found (Lee Spector’s
Explicit Matrix Expansion):

– Let G be the quantum gate’s matrix representation of its applied transformation

– Expand G to account for any attached controllers to the gate

– Let M be the matrix of dimensions 2n x 2n where n is the number of qubits in the
system to be simulated

– Let Q be the set of qubits which the gate affects, and Q’ be the gate which it does
not

– M[i][j] = 0 where i and j differ in their binary representations, in any of the positions
which apply to Q’

– If they do not differ, concatenate bits from the binary representation of i in the
positions which apply to Q to produce i*. Do the same for j*, then set M[i][j] =
G[i*][j*]

– Apply matrix M to the vectors of amplitude for each possible state

• Calculate all possibilities with the probability of occurrence

• Stop timer

• Display all probabilities along with time of execution

The implemented algorithm works well as it accounts for the whole system, rather than applying
each gate to their applied qubits in isolation. However, it runs slowly as it requires the
expansion of each gate when applying the transformation to the vectors of amplitudes. Future
improvements may involve streamlining the algorithm to reduce the time taken to execute the
algorithm, perhaps by storing previously expanded matrices, to prevent the repetition of the
algorithm when the application is already aware of its expanded state.

37

10.3 Prototype Three 10 IMPLEMENTATION DOCUMENTATION

10.3 Prototype Three

As a problem identified within prototype two during testing, the application becomes slow and
unwieldy to use when working with moderate to large scale systems, while sometimes resulting
in a complete failure of the application and requiring a restart, losing the current circuit setup
the user had achieved. This becomes more apparent as more objects are added to the working
system; this may mean qubits, length of wire or logic gates themselves. As a result, prototype
three looks into performance issues and potential for optimisation within the code base, in order
to make the application more usable, scale better with larger systems and less frustrating for
the user to achieve their objectives through usage of the application.

This saw the execution of the first phase of performance tests. The results of the tests can be
found in the Appendix section (tests ran at this phase have been numbered Test Run 1-1 to
1-3). The result set shows the functions (which were written by the developer, as opposed to
native JavaScript functions or imported library functions) called which were allocated the largest
amount of processing time in order to reach its evaluation of the simulation are as follows:

• updateCircuit - circuitry.js

• drawCircuit - circuitry.js

• draw - qubit.js

• setGate - step.js

• draw - step.js

Analysing the functions identified as lengthy in terms of processing time revealed these functions
mainly involve creating or manipulating, and displaying SVG elements. To add to the processing
time, the handling of the drawing has been revealed to be inefficient. This is due to an earlier
implementation decision to simply redraw the whole circuit whenever a graphical element requires
updating, or there has been an addition/removal from the circuit entirely. This was simpler in
terms of logical processing (i.e. conceiving the algorithm to deal with drawing the circuit), as
well as its implementation itself. However, it clear has had an adverse affect on the performance
of the application, as it redraws elements which have had no changes. This is an unnecessary
function call which wastes processing time.

One function call which does not deal with graphic management only is the setGate() function;
while this does call for an update to the circuit drawing, it also changes the gate which the step
is holding in its place. Looking at this, it also instantiates the logical objects to do with its
algorithmic evaluation, such as creating a set of matrices to apply transformations to. This is
lengthy as it means the creation of logical objects which are not immediately necessary, and at
a worse case scenario, unused if the user replaces the gate.

The proposed solutions to improve the required processing in setting up a circuit are as follows
will involve two major changes to the code base in general. The first of which is to refine the
drawing algorithms of the circuit. Instead of simply calling a redraw on every update, it would
be more efficient to pinpoint the elements that require updating, and update those in isolation.
This should remove a large amount of redundant drawing functions. The second, is to refactor

38

10.4 Prototype Four 10 IMPLEMENTATION DOCUMENTATION

the code, and separate the drawing from the simulation elements. This way it will be possible to
defer the creation of components until they are necessary to complete a higher function, and will
remove the risk of the object itself being redundant in the case that they are never used.

During the refactoring of the code base, it was also discovered a large amount of graphical
elements were not being removed on the redraw function. As such, the frequent number of
calls to the redraw function resulted in a large amount of graphical objects being alive at once,
though behind the most updated graphical circuit. This used a significant portion of memory
to maintain, and is likely to the largest contributor to the reduction in responsiveness and
likelihood to critically fail after extended use. Addressing this issue relieved the application of
poorly managed resources, and allowed the system to be more responsive.

Below compares the processing time used on these functions on prototype two and three. Note,
the updateCircuit function and drawCircuit function is not compared as it no longer exists in
prototype three. Additionally, we have drawQubit and drawStep functions, instead of draw
functions which belong to respective objects. Instead, drawing functions have been refactored
into a painter class.

Avg. Time (ms)
Function Prototype Two Prototype Three Time Difference (%)
draw/drawQubit 19,529.33 45.43 0.23
setGate 19,461.27 21.87 0.11
draw/drawStep 17,668.87 204.87 1.16

Figure 10: Comparison of processing time between Prototype Two and Three

10.4 Prototype Four

Prototype four involved work on the persistence of created circuit set ups. Work on this feature
brought about the inclusion of allowing the user to upload to a communally shared database,
as well as downloading works of the individual as well as others who have uploaded. JSON is
used to convert the circuit set up to a textual representation for storage and transfer whereas
MongoDB is used to host the data; MongoDB is suitable as a document database suitable for
storing large text strings. jQuery has also been pulled in to help with the binding of events to
web control elements, as well as aiding with the AJAX calls to send and retrieve data from the
database.

To begin, the developer began implementing the functionality with very basic interface support.
This involved the usage of JavaScript’s native alerts and prompts in order to receive input from
the user such as the desired name to give to a circuit. Once the functionality was developed,
work moved towards providing an interface to streamline the user’s usage of interacting with the
persistence options. For this, Bootstrap was used as well as their example of modal windows to
provide views which may be shown or hidden using web controls. This abstracts the functionality
away from the main use case of simulating circuits. It was also realised this would be a good

39

10.4 Prototype Four 10 IMPLEMENTATION DOCUMENTATION

way to declare external libraries used to create the system, without cluttering the interface, and
so this was also implemented in this prototype.

The developed feature allows the user to save or load the system locally; this involves converting
the circuit to a JSON string and the user entering a JSON string respectively. If opting to
leverage the available database, the user must enter a circuit name to save the circuit, and upon
retrieval the user may select from a list of circuits to load into the workspace.

The JSON string constructed is an array containing only the bare minimum information required
to construct a circuit, which has been converted into JSON. This has the benefits of minimising
the length of the JSON string generated, as well as avoiding the need to resolve any issues
with the circuit object itself, such as unnecessary information and recursive structures. In Figure
11, a JSON representation of a circuit with two qubits, each with an initial state of zero, with
a Hadamard gate placed in the upper most left corner of the circuit (first qubit, first step) is
shown.

[”00”,[”Hadamard”,0,0,[]]]

Figure 11: Example of a JSON representation of a simple circuit.

>db.circuits.find(name: ”Hadamard”)
” id” : ObjectId(”534c1d607f8f95bf670009dd”), ”name” : ”Hadamard”, ”json” :
”[\”00\”,[\”Hadamard\”,0,0,[]]]”

Figure 12: MongoDB Record of ”Hadamard” Circuit.

40

11 TESTING

11 Testing

11.1 Manual Testing

Manual testing was used in the early prototypes when unit tests had not yet been implemented,
and is still used to test cases which have not yet had unit tests created for them, or cannot
be or is hard to test through unit tests. An example of something which cannot be unit tested
is if the correct graphic is drawn when a gate is placed. This must be verified by a human.
Things which are difficult to unit test is the check if the pagination is working correctly for the
downloadable circuit listing, as the listing on the page may change. A manual testing plan and
results can be found in the appendix.

Further improvements to be made in the testing suite is to migrate tests which can be unit
tested, for example the conversion of a circuit to a JSON string, or the opposite which is to
construct a circuit from the JSON string.

11.2 Unit Testing

Unit testing has been leveraged in this project to ensure the results obtained from evaluating
the simulated system is accurate. To perform unit testing, QUnit was used to implement the
unit test suite. The first iteration of test suites began from adapting an example version which
served to ease developers into unit testing with JavaScript, by implementing a test suite which
used only JavaScript functions and the JavaScript console as an output log.

This was a gentle introduction as well as a powerful tool, as it allowed the developer to check
if any modifications to the code base had affected the results of the evaluator on a wide range
of inputs each time the application was executed. Hence, errors could be noticed immediately,
and corrections be made much swifter comparing to the exclusion of unit testing.

Beginning unit tests... unit-test-runner.js:1
Of 23 tests, 0 failed, 23 passed. unit-test-runner.js:31

Figure 13: Passing output log from version one of unit test suite

11.3 Performance Testing

Performance testing was seen as a necessity in this project, due to the wasteful management
of resources seen in Prototype Two. To obtain a set of consistent and semantic results from
performance testing, the same machine will be used in each iteration of test runs. This helps to

41

11.3 Performance Testing 11 TESTING

control the results, leaving the performance improvements to be the main reason for the change
in results. For the same reason, the same browser will be used under the same conditions. For
completeness, information on the machine and browser to be used are as follows:

Test Machine
Operating System Windows 7 Professional 64-bit (6.1, Build 7601)
Processor Intel Core i7 CPU - 2.8GHz (8 CPUs)
Memory 4096MB RAM
Video Card Nvidia GeForce GTX 460 - Approx. 2748MB Memory

Figure 14: Hardware listing of test machine to be used to test application performance

Web Browser
Name Google Chrome
Version 33.0.1750.154 m

Extensions

ActiveX for Chrome - 1.5.0.7
AdBlock - 2.6.18
Google Docs - 0.5
Hola Better Internet - 1.3.31
JavaScript Errors Notifier - 2.1.5
Web Developer - 0.4.5

Figure 15: Detail listing of browser to be used to test application performance

Obtaining tangible data as a result of any test performed is important, as it allows the tester
concrete data to base their findings and analysis upon. With a strong foundation of these
findings, it simplifies the resulting action of constructing an action plan to follow the results,
fixing any problems identified during the process. Without tangible data, the interpretation of
the results can be much looser, meaning individuals may draw different findings from the same
result set, and thus react differently.

To obtain this data, the testing process will make use of Google Chrome’s natively built Developer
Tools (DevTools). The tool to be used from the Developer Tools will be the JavaScript CPU
Profiler, allowing recording of the CPU profile, breaking the processing time into the specific
JavaScript function being processed. This will provide a break down of the proportion of time
spent performing JavaScript functions, even if they are called multiple times. It will allow the
tester to identify which functions are the most time costly in normal application usage, as a quick
function may be called frequently, whereas a slower function may only be called once.

The circuit shown in Figure 16 shows the circuit to be constructed while the CPU profiler is
recording. Previous attempts to formalise a larger system for testing have caused the program
to be unstable and likely to critically fail beyond this point. It would be prudent to formalise the
method of construction; the steps devised are as follows:

• Begin the CPU Profiler

42

11.3 Performance Testing 11 TESTING

Figure 16: Performance Testing test circuit

• Increment the qubit counter to 5 using the buttons (instead of manual typing)

• Increment the step counter to 20 using the buttons (instead of manual typing)

• Change the bottom most qubit initial state to 1

• From left to right, top to bottom - Add gates to the circuit until complete

• Evaluate the circuit

• Stop the CPU Profiler

43

12 EVALUATION OF PRODUCT

12 Evaluation of Product

As mentioned in the introduction of this section, the product shall be evaluated against a subset
of ISO/IEC 9126 to analyse quality. The subset of ISO/IEC 9126 factors to be used in evaluating
the quality of the product are as follows:

• Functionality

– Suitability

– Accuracy

• Reliability

– Fault Tolerance

• Usabillity

– Learnability

– Operability

– Attractiveness

• Efficiency

– Time Behaviour

• Maintainability

– Testability

The product developed delivers perhaps the most important functionality required of a simulator
which is to evaluate a user generated quantum circuit. The user may use the controls to specify
properties of the circuit such as the number of qubits required and the possible number of steps
to simulate. Manipulation of the circuit itself is possible by changing the start state of qubits
as well as chaining together logic gates. Once the user is satisfied with the set up of the circuit,
an evaluation allows the user to view results derived from the set up.

Suitability can be further improved in this product by adding additional features which may
prove useful to the user such as exporting the results of a simulation to other formats allowing
for simpler embedding in other environments. Another feature may be to export a visual
representation of the circuit, such as a PNG format for similar reasons; embedding in other
environments.

Although unit testing has allowed the developer to ensure the accuracy of the simulation is
consistent, it requires accurate values as a comparator to be used. Values to be used for
comparison were obtained through a combination of manual calculation and academic resources

44

12 EVALUATION OF PRODUCT

(such as books and videos). The combination of both unit testing and accurate values to be
used for the purposes of comparison has provided a basis of confidence when determining the
accuracy of the results provided by the simulator.

The system developed has a considerable amount of fault tolerance, part of which is a result
of having chosen JavaScript as the language of implementation. JavaScript has a considerable
amount of fault tolerance as it omits a function call if it encounters an exception, instead of
halting execution of the application as a whole. Other factors which increase the fault tolerance
of the system include validation of input. Checks are in place to ensure the qubit number and
step number do not drop below one as it would not make sense to attempt to simulate a circuit
where either of these values are zero.

To a user who has little knowledge of the workings of a quantum system may find the system
difficult to use, with minimal prompts to inform the user of the proper usage of the system.
The user may not fully understand the function of the gate, or perhaps even the purpose of the
logic gates on the whole, as little explanation of how the results have been derived from the
simulated system.

To a user who is knowledgeable in the field of quantum computing and understands the notation
of the gates involved, as well as the underlying mathematics to obtain the values, the product
should be easy to learn. The graphical prompts give feedback and aid the usage of the system.
For example, highlighting the selected gate or highlighting where the gate will be placed on
click.

To improve learnability, semantic and contextual prompts could be added. Potential areas for
these include the toolbox, so the user may understand the usage of the logic gates. Another
potential feature may be to add a step-by-step evaluation, to show the change of qubit states
over the process of the simulation. This breakdown should help the user to learn how the
simulated circuit has transformed the initial qubit states into their final results.

In terms of operability, the product is a stand alone product and does not provide or require
functions which call other external systems aside from external libraries. These have been
downloaded and referenced locally so operability is not a major concern when looking at its
external calls. Internally, the system operates well under small scale simulated systems, functioning
in a timely manner and remaining stable. On a larger scale of simulated system, the application
does not utilize available resources well and is prone to critically failing. A short term fix would
be to apply a hard coded limit on the size of the system to be evaluated, in order to restrict the
amount of resources required to perform an evaluation. A more suitable fix would be to analyse
the evaluation algorithm, and identify areas of the code base to be optimised.

The attractiveness of the product changes considerably with the size of the window. When the
window is large enough, the system displays as intended with information easily accessible and
to identify. Upon shrinking of the window, the web page tries to re-organise the elements in
order to fit into the new window size, disjointing some elements from their intended location.
One approach to improving this would be to reconsider positioning of elements. It may be
more flexible to display the results on the left to match flow layout which web pages try to
implement. Other approaches will involve researching possible methods to assist in maintaining

45

12 EVALUATION OF PRODUCT

a layout.

Facets concerning time behaviour have been previously mentioned; it operates in a timely manner
when dealing with small scale systems, but suffers on larger simulations. Especially so with a
large number of logic gates to evaluate. Drawing of graphical elements is fairly optimised and
timely, as the system only draws the element which requires an update, instead of redrawing
the whole system. However, when performing an evaluation, the algorithm must be run over all
logic gates devised in the system and is currently the largest threat to the system’s performance.
In the future, it may be effective to analyse the algorithm which performs the evaluation and
identify points of optimisation in order to increase the timeliness of the system.

Outside of the code base, design decisions may have factored into the product’s timeliness.
The user must place one gate at a time, with no alternative option to put down multiple gates
concurrently. An improvement in this respect may be to add a feature which allows the user to
somehow place multiple gates in quick succession. This could be realised as drawing an area to
place the gates, or using a textbox prompt to specify a range to place the logic gates in.

When evaluating testability, it is important to consider the range of tests to be performed, as
different groupings of tests must be performed in different methods. The factors to be tested
within the product involve the graphical representation of the constructed circuit, the data
representation of the circuit constructed (through the graphical interface), and the accuracy of
the evaluation of the circuit.

Testability of the graphical interface is currently a manual process in which the tester must
execute the application and construct a circuit using a variety of tools available, and changing
the properties of the circuit set up. The nature of the product makes it difficult to automate
to test the graphical interface, as many test suites available test graphical web controls such
positioning of textboxes or buttons, as opposed to dynamically drawn elements. The data
representation of the circuit when constructed through the use of the graphical interface is
also currently performed as manual tests. Again, this is due to the nature of the graphical
implementation of the product.

The evaluation of the circuit has a higher level of testability, currently realised as a set of unit
tests which can be run on execution of the application. The unit test suite tests the accuracy
of the quantum logic gates, both in isolation and some cases where it makes sense to test the
gates in combination such as testing entanglement or controlled gates. The speed of testing
and error detection is increased by many magnitudes. The tests are completed in a small time
period, and returns results immediately upon completion. The developer can detect faulty code
almost immediately and these tests can be extended to cover new implementations as the unit
tests have been refactored. The developer simply needs to call the test with the appropriate
parameters.

From the evaluation the developer believes the product is of a fairly high quality, though there is
much room for improvement. The product meets all requirements as laid out in the specification,
and considerable work has gone into improving quality factors concerning the product, such as
timeliness, stability and maintainability. Further work will go into the product to further improve
its quality.

46

12 EVALUATION OF PRODUCT

Figure 17: Execution times of evaluator against number of logic gates

To further evaluate the product, the performance of the evaluator shall be analysed. It is
expected the simulator will not be able to match the predicted processing speeds of quantum
algorithms. To perform the analysis, Grover’s algorithm will be simulated multiple times, with
an increasing flag bit to be searched for. It is expected larger circuits with higher number of
logic gates will take longer to evaluate. A comprehensive tabulation of the results can be found
in the appendix.

While the results are not exactly as predicted, they still show an increase in execution time
correlating to the number of logic gates to be simulated, with a larger magnitude than the
polynomial execution times expected of quantum algorithms. An explanation for the staged
groupings of results seen in Figure 17 may be due to the number of qubits required to simulate
Grover’s Algorithm on that certain flag bit. With more qubits, the algorithm implemented must
expand the logic gate’s matrix to match the size of the qubits’ possible states, hence a lengthier
execution time.

The algorithm currently implemented is of complexity O(n) as the algorithm scales linearly, in
two respects; The number of gates or the number of qubits. When either of these parameters
increase, so does the execution time. To improve on this, it would be worth analysing the
algorithm itself to find points of optimisation, or perhaps to implement a faster algorithm. For
example, Spector’s Implicit Expansion Algorithm may be faster as it does not require expanding
the logic gate’s matrix.

47

13 CONCLUSIONS

13 Conclusions

Throughout the project, development leveraged the usage of evolutionary prototypes to deliver
functionality iteratively. This allowed the developer to stage the development, which created
conceptual milestones to achieve to drive the development. Following this ideal allowed for a
more robust and functional application at the end of each iteration, with each iteration bringing
more and more features.

This worked well, as the abstraction of functionality to be achieved allowed the developer to
better focus on the current objective to be met. For example, during the development of the
first prototype, the developer needed to worry only about the graphical elements which built up
the user interface, without worryingh about implementing the algorithms to evaluate the circuit.
The testing phase at the end of each prototype allowed the developer to decide which feature
to work on during the next prototype. Hence, why prototype three saw the optimisation of the
graphical elements.

To improve upon the prototyping methodology used, it may have been useful to formalise time
periods to deliver prototypes on. With the irregular prototype completion frequency which came
as a result of the informalised evolutionary process, the proportions of time spent on each aspect
or phase of the development cycle varied from prototype to prototype. While it is expected larger
applications may take longer to design upon or test upon, the product developed saw a wide
range of time portions contributing to each prototype, seemingly with little to no correlation.
This had the knock on affect of the developer sometimes being in the incorrect mind set. For
example, feeling he should still be in the testing phase due to the length of the testing phase in
the previous iteration. Formalising the time periods may have allowed for a more regular process
and improved the flow of the development.

Further improvements would be to make use of the resources available, extending this definition
to include personnel and time. Along with the evolutionary prototypes it would have been useful
to meet with supervisors to gather feedback on how to progress and further the product with
additional features and academic insights. This will be a good process to carry forward into
future projects.

The performance of the literature, technical review, as well as evaluation of existing product
allowed the developer to garner insights to the current state of the field. This was useful as
it allowed the developer to understand the quality required of the product to be developed, as
well as any academic or technical interests involved with the product to be developed. Both
online and physical sources were consulted, ranging from a wide variety of media, from academic
journals, textbooks and short online videos giving a large scope into the research.

Although this process was performed to what the developer believes is an adequate level, it may
have been hindered by the developer’s desire to build a specific application. In the future, it will
be better to take a more objective and neutral view upon the findings of the research, before

48

13 CONCLUSIONS

beginning any design or implementation of the product. This would allow for the project to be
directed toward building a product with a higher level of interests from both the academic and
technical areas of the involved field, and thus deliver a product of higher all around value.

Throughout the duration of the project the developer has gained an increase in competency and
technical ability having worked with mostly technologies previously not known to the developer
such as JavaScript and MongoDB, as well as the inclusion of widely used libraries such as
jQuery and Bootstrap. Abilities were also improved in technologies already known such as PHP,
HTML and CSS. Perhaps the greatest achievement is the implementation of AJAX to submit
asynchronous requests and retrieve data from the database.

Abilities the developer will endeavour to work on in the future is regulation of formal processes.
The project undertaken was carried out in a particularly informal manner which worked well as it
suited the nature of a project performed by an individual as opposed to a team, but also created
periods of times when the developer was not fully confident in the next step or the direction to
take the project into. This could be aided by formalisation, such as organising regular meetings
and utilising the full range of available resources.

Overall, the developer is content with the product created as a deliverable of this project as it
meets the initial requirements laid out in the specification, utilises fairly new technologies which
are of interest and further work is planned to continue to improve and increase the quality of
the product.

49

14 REFERENCES

14 References

WIRED, 2007. The Father of Quantum Computing. [online] Available at: http://www.wired.
com/science/discoveries/news/2007/02/72734 [Accessed 6 January 2014]

Bacon, D. and Van Dam, W., 2010. Recent Progress in Quantum Algorithms. Communications
of the ACM, [e-journal] 53(2). Available through: Communications of the ACM website at:
<http://cacm.acm.org/> [Accessed 6 January 2014]

Arikan, E., 2003. An information-theoretic analysis of Grover’s algorithm. [pdf] Available at:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1228418> [Accessed 12
April 2014]

Van Meter, R., and Horsman, C., 2013. A Blueprint for Building a Quantum Computer.
Communications of the ACM, [e-journal] 58(10) Available through: Communications of the
ACM website at: <http://cacm.acm.org/> [Accessed 6 January 2014]

Mone, G., 2013. Future-Proof Encryption. Communications of the ACM, [e-journal] 56(11).
Available through: Communications of the ACM website at: <http://cacm.acm.org/> [Accessed
6 January 2014]

D-Wave, 2013. Quantum Computing - Gate Model v Adiabatic. [video online] Available at:
<https://www.youtube.com/watch?v=4tAG-qyikFc> IBM, 2001. Experimental realization
of Shor’s quantum factoring algorithm using nuclear magnetic resonance. [pdf] IBM Almaden
Research Center: Macmillan Magazines. Available at: <http://cryptome.org/shor-nature.
pdf> [Accessed 6 January 2014]

Lu, C., et al., 2007. Demonstration of Shor’s quantum factoring algorithm using photonic
qubits. [pdf] Available at: http://arxiv.org/pdf/0705.1684v3.pdf [Accessed 6 January
2014]

BBC, 2013. Quantum memory ’world record’ smashed. BBC News, [online] 15 November 2013.
Available at: <http://www.bbc.co.uk/news/science-environment-24934786> [Accessed
6 January 2014]

D-Wave, 2014. The D-Wave Two System - The first commercial quantum computer. D-Wave,
[online] 2014. Available at: <http://www.dwavesys.com/d-wave-two-system> [Accessed
01 April 2014]

Nature, 2013. Google and NASA snap up quantum computer. Nature, [online] 16 May 2013.
Available at: <http://www.nature.com/news/google-and-nasa-snap-up-quantum-computer-
1.12999> [Accessed 01 April 2014]

Nature, 2013. Computing: The quantum company. Nature, [online] 19 June 2013. Available at:
<http://www.nature.com/news/computing-the-quantum-company-1.13212> [Accessed 01

50

14 REFERENCES

April 2014]

Johnson, M. W. et al. Nature 473, 194-198 (2011)

Neven, H., et al., 2009. Training a Large Scale Classifier with the Quantum Adiabatic Algorithm.
[pdf] Available at: <http://arxiv.org/pdf/0912.0779v1.pdf> [Accessed 01 April 2014]

Perdomo-Ortiz, A., et al., 2012. Finding low-energy conformations of lattice protein models
by quantum annealing. Nature [online] Available at: <http://www.nature.com/srep/2012/

120813/srep00571/full/srep00571.html> [Accessed 01 April 2014]

NewScientist, 2013. New language helps quantum coder build killer apps. NewScientist,
[online] 05 July 2013. Available at: <http://www.newscientist.com/article/dn23820-

new-language-helps-quantum-coders-build-killer-apps.html#.U0mZKPldVP8> [Accessed
12 April 2014]

Dropbox, 2014. Pricing. Dropbox [online] Available at: <https://www.dropbox.com/pricing>
[Accessed 18 January 2014]

University of Greenwich, 2013. School of Computing & Mathematical Sciences, Student Technical
Support. University of Greenwich, [online] 16 October 2013. Available at: <http://portal.

gre.ac.uk/tag.dbc05d659fb70c4e.render.userLayoutRootNode.uP?uP_root=root&uP_

sparam=activeTab&activeTab=u12l1s22&uP_tparam=frm&frm=frame> [Accessed 18 January
2014]

W3C, 2014. HTML5 - W3C Candidate Recommendation. W3C [online] Available at: <http://
www.w3.org/TR/html5/scripting-1.html#the-canvas-element> [Accessed 05 April 2014]

W3C, 2011. Scalable Vector Graphics (SVG) 1.1 (Second Edition) - W3C Recommendation
(W3C [online] Available at: <http://www.w3.org/TR/SVG11/intro.html> [Accessed 05
April 2014]

Wybiral, D., 2013. Quantum Circuit Simulator [online] Available at: <http://www.davyw.

com/quantum/> [Accessed 9 January 2014]

Federal University of Campina Grande. Zeno [online] Available at: <http://dsc.ufcg.edu.

br/~iquanta/zeno/index_en.html> [Accessed 9 January 2014]

Spector, L. (2006). Automatic Quantum Computer Programming: A Genetic Programming
Approach New York, Springer Science+Business Media, LLC

51

15 APPENDICES

15 Appendices

Figure 18: Project Proposal

An Overview of the Development of a Quantum Computer
Simulator

Jonathan Law - lj048
BEng Software Engineering

000611905

15.1 Project Proposal

15.1.1 Overview

The objective of the project is to develop a simulator with the capability of supporting the
computations and evaluations of a quantum computer at the circuitry level. The software will
allow users to specify an amount of qubits, their input states and the logic gates to operate on the
qubits. Once the set-up of the circuitry is completed, the software will be capable of analysing
the output and give a probability of each qubit’s corresponding 0 and 1 states. Achieving these
functionality should also aid users in the simulation of quantum algorithms; Algorithms which
can only be completed specifically by quantum computers due to their use of superpositions.
The focus of this project is the functionality and accuracy of the simulator, over the ease of use
of factors such as the UI or responsiveness, though these factors will still be considered.

Keywords: [simulator, quantum, computer, superpositions]

15.1.2 Aim

The aim is to provide a simulator which allows the user to simulate the circuitry level of a
quantum computer. The means of deployment will depend on the finFdings of the research, as
well as the requirements which will be finalised at a later date.

15.1.3 Objectives

Objectives are described using nouns, either concrete nouns or abstract nouns. Some objectives
are big and some objectives are small. All objectives must be SMART. Objectives are created by
activities. Activities are described using verbs. An objective may be created by a single activity

52

15.1 Project Proposal 15 APPENDICES

or by several activities. Activities take time. Provide a time estimate in days for each activity
(as shown below in square brackets).

At the highest level your objectives are; a research report, design documentation, an implementation,
an evaluation report. These high level objectives must be broken down into smaller objectives
according to your individual project and the deliverables expected by your supervisor. All required
project deliverables should be included here as an objective. Objectives should be ordered in
approximate chronological order of creation, so ‘Statement of Requirements’ will come before
‘Paper Prototype’ even though there may be iteration between these two objectives.

Provided below is a product breakdown structure; Listed will be the products which should be
developed in order for the project to be successful, and each product will detail tasks required
for that specific product. See the GANTT Chart attached in the appendix to understand the
time scheduling associated with tasks.

1. Compiled Report

(a) Literature Review

i. Read peer review sources around the subject area to gain better understand of
the current field.

ii. Create document to record and discuss findings.

(b) Technical Review

i. Research and choose from available programming languages to implement the
application.

ii. Create document to record and discuss findings.

(c) Existing Product Review

i. Research and evaluate similar existing applications which achieves similar objectives.

ii. Create document to record and discuss findings.

(d) Design Documentation

i. Develop design documents to graphically show the intended layout of the application
and its typical use case scenario.

ii. Develop functionality documents to diagrammatically show aspects of the implementation,
such as use cases, behaviours, etc.

(e) Implementation Documentation

i. Document progress through each prototype and discuss problems.

(f) Testing Documentation

i. Plan and prepare documentation to allow outlining of test plans and results.

ii. Perform manual tests outlined against documentation against application.

53

15.1 Project Proposal 15 APPENDICES

2. QC Simulator Application

(a) Design Documentation

i. (Identical to the Design Documentation product outlined in the Compiled Report)

(b) Implementation Documentation

i. (Identical to the Implementation Documentation product outlined in the Compiled
Report)

(c) Testing Documentation

i. (Identical to the Testing Documentation product outlined in the Compiled Report)

(d) Application

i. Prototype One

A. Create basic web controls

B. Develop toolbox to allow users to select gates

C. Create graphical circuit to allow users to place gates

D. Allow space to display evaluation content

ii. Prototype Two

A. Implement algorithm to calculate results of simulated circuit

B. Display evaluation

iii. Prototype Three

A. Add saving of circuit design

B. Add loading of circuit design

15.1.4 Legal, Social, Ethical and Professional

As a professional, the system should be accurate when evaluating the output of a simulated
circuit. Users may be using the product as a tool to aid in the evaluation of quantum algorithms,
and incorrect results could possibly lead to an incorrect conclusion about the work they are
conducting.

Research and testing will help to mitigate against this, but to allow for retroactive correct
after the system is completed, users should be able to contact the developer or give feedback
flagging any inaccuracies. They will be checked and amended, available in an update of the
product.

54

15.1 Project Proposal 15 APPENDICES

15.1.5 Planning

For the purposes of the design documentation, UML will be used to convey the design decisions
taken. This will affect the design documentation for the library. The UI will be designed as a
series of images, outlining the placement of objects within the window.

During development, using RAD methodology will allow for regular prototyping of the product,
enabling feedback and increased changeability in the product. It also suits the low manpower
and timeliness available for the project. JUnit testing will be useful as it allows for automated
testing, and is suitable to test the library’s accuracy, as the expected output will be the result
of a mathematical function.

To manage the project on the whole, tasks will be flagged for completion during an iteration.
Any leftover or uncompleted tasks will carry over to the next iteration. This may result in the
need for using contingency time.

15.1.6 Initial References

Wikipedia, 2013, Quantum Computer. [online] Available at <http://en.wikipedia.org/

wiki/Quantum_computing> [Accessed 04 November 2013]

Norton Q, 2007, The Father of Quantum Computing. WIRED, [online] 15 February, Available
at: <http://www.wired.com/science/discoveries/news/2007/02/72734> [Accessed 04
November 2013]

Wikipedia, 2013, Quantum Gate. [online] Available at <http://en.wikipedia.org/wiki/

Quantum_gate> [Accessed 04 November 2013]

Van Meter, R and Horsman, C, 2013. A Blueprint for Building a Quantum Computer. Communications
of the ACM, 58(10), pp.84-93.

55

15.1 Project Proposal 15 APPENDICES

ID Name Duration Start Finish Predecessor
1 Literature Review 14 days 21/11/2013 05/12/2013
2 Technical Review 14 days 05/12/2013 19/12/2013 1
3 Existing Product

Review
14 days 19/12/2013 02/01/2014 2

4 Prototype 1 31 days 02/01/2014 02/02/2014 3
5 Create basic web

controls
2 days 16/01/2014 18/01/2014

6 Develop toolbox to
allow users to select
gates

7 days 18/01/2014 25/01/2014 5

7 Create graphical
circuit to allow users
to place gates

7 days 25/01/2014 01/02/2014 6

8 Allow space to display
evaluation content

1 day 01/02/2014 02/02/2014 7

9 Prototype 2 31 days 03/02/2014 06/03/2014 4
10 Implement algorithm

to calculate results of
simulated circuit

21 days 12/02/2014 05/03/2014

11 Display evaluation 1 day 05/03/2014 06/03/2014 10
12 Prototype 3 31 days 07/03/2014 07/04/2014 9
13 Add saving of circuit

design
7 days 24/03/2014 31/03/2014

14 Add loading of circuit
design

7 days 31/03/2014 07/04/2014 13

15 Compilation and
Final Checks of
Report

7 days 07/04/2014 14/04/2014 12

Figure 19: Table showing proposed schedule

56

15.1 Project Proposal 15 APPENDICES

Figure 20: GANTT chart of proposed schedule

57

15.2 Design Documentation 15 APPENDICES

15.2 Design Documentation

Figure 21: Use case diagram (version 1) for the proposed application

Figure 22: Class diagram (version 1) for the proposed application

58

15.2 Design Documentation 15 APPENDICES

Figure 23: Class diagram (version 2) for the proposed application

59

15.3 Screenshots of Program 15 APPENDICES

15.3 Screenshots of Program

Figure 24: Screenshot of prototype version 1

Figure 25: Screenshot of prototype version 2

60

15.4 Testing Documentation 15 APPENDICES

Figure 26: Screenshot of prototype version 4

Figure 27: Screenshot of prototype version 4 with a modal window

15.4 Testing Documentation

61

15.4 Testing Documentation 15 APPENDICES

Table 1: Manual Test Results.

ID Test Expectation Result Action Taken
1 Press

Evaluate
button

Results appear in
evaluation pane.

Results appear in
evaluation pane.

None taken.

2 Select tool Tool is highlighted and
help text updates.

Help text did not
update.

Called function to
update help text after
tool selection.

3 Place gate Gate is placed on
circuit in correct area.

Gate is placed on
circuit in correct area.

None taken.

4 Place gate
on top of
another

Gate is replaced over
old gate.

Gate is replaced over
old gate.

None taken.

5 Change
qubit state

Qubit changes state. Qubit changes state. None taken.

6 Increase
qubit count

Another qubit is added
to circuit.

Qubit was added but
not drawn.

Called draw function
after qubit count
changes.

7 Decrease
qubit count

Last qubit to be
removed from circuit.

Last qubit to be
removed from circuit.

None taken.

8 Increase
step count

Length of wire to
increase by one step.

Length of wire to
increase by one step.

None taken.

9 Decrease
step count

Length of wire to
decrease by one step.

Drawing area shrunk,
removing step graphic,
but did not splice the
logical object.

Correctly spliced the
step on step decrease.

10 Press reset
button and
accept

Circuit returns to
original state.

Circuit returns to
original state.

None taken.

11 Press reset
button and
decline

No change to circuit. Modal window did not
face out.

Added dismiss call on
the decline button.

12 Save circuit Window to appear
with JSON in textbox.

Window to appear
with JSON in textbox.

None taken.

13 Load good
circuit

Circuit to change to
new configuration.

Alert informing user of
rejected JSON string.

Adjusted JSON string
obtained from save to
correctly match
accepted input.

14 Load bad
circuit

Alert informing user of
rejected JSON string.

Alert informing user of
rejected JSON string.

None taken.

Continued on next page

62

15.4 Testing Documentation 15 APPENDICES

Table 1 – continued from previous page
ID Test Expectation Result Action Taken
15 Upload

circuit
Circuit to be uploaded
after entering circuit
name.

Alert informing user of
failed upload.

Modified PHP to use
the correct method
calls to insert into
MongoDB.

16 Download
circuit

Circuit to change to
new configuration.

Circuit to change to
new configuration.

None taken.

17 Increment
page (on
download
view)

Page counter
increments, and new
page of circuits
displayed.

Page counter did not
increment. No new
page shown.

Correctly incremented
page counter, and
applied fix to
decrement page
counter.

18 Decrement
page (on
download
view)

Page counter
decrements, and new
page of circuits
displayed.

Page counter
decrements, and new
page of circuits
displayed.

None taken.

Figure 28: Manual Test Results

Table 2: Performance Test Run 1-1 Results.

Self (ms) Total (ms) Function Source
66415.3 66415.3 (idle)
2.0 20325.1 updateCircuit circuitry.js:35
6.1 20095.8 f raphael-2.1.2.js:3098
4.0 19854.4 drawCircuit circuitry.js:19
34.3 19735.2 draw qubit.js:34
0 19648.3 (anonymous function) step.js:141
1.0 19648.3 setGate step.js:20
131.3 18093.6 draw step.js:124
163.7 12611.3 (anonymous function) raphael-2.1.2.js:5233
202.0 12572.9 setproto.forEach raphael-2.1.2.js:5223
1637.5 12397.1 (anonymous function) raphael-2.1.2.js:5235

1564.8 10486.8
R.(anonymous function).
elproto.(anonymous function)

raphael-2.1.2.js:3431

5362.1 8926.1 e raphael-2.1.2.js:3097
1575.9 4702.5 setFillAndStroke raphael-2.1.2.js:6065
4509.5 4509.5 (garbage collector)
3564.0 3564.0 addEventListener
2919.5 2919.5 (program)
72.7 2228.5 paperproto.path raphael-2.1.2.js:3746

Continued on next page

63

15.4 Testing Documentation 15 APPENDICES

Table 2 – continued from previous page
Self (ms) Total (ms) Function Source
79.8 2109.3 R. engine.path raphael-2.1.2.js:6444
32.3 1986.0 drawGate gate.js:113
123.2 1913.3 elproto.attr raphael-2.1.2.js:6750
44.4 1797.1 paperproto.text raphael-2.1.2.js:3791
488.9 1744.6 $ raphael-2.1.2.js:5792
1573.9 1577.9 setAttribute
44.4 1228.4 tuneText raphael-2.1.2.js:6319
74.8 1161.7 paperproto.rect raphael-2.1.2.js:3687
7.1 980.9 elproto. getBBox raphael-2.1.2.js:6653
973.8 973.8 getBBox
41.4 824.3 R. pathToAbsolute raphael-2.1.2.js:2104
0 597.0 incrementStepCount main.js:72
0 597.0 onclick index.html:27
0 597.0 updateSteps circuitry.js:52
109.1 558.6 R.parsePathString raphael-2.1.2.js:1465
34.3 468.7 R.clear raphael-2.1.2.js:7088
183.9 423.3 eve raphael-2.1.2.js:54
416.2 416.2 removeChild
385.9 389.9 appendChild
346.5 346.5 (anonymous function) raphael-2.1.2.js:1548
1.0 290.9 onclick index.html:25
3.0 289.9 evaluateCircuit circuitry.js:65
2.0 285.9 (anonymous function) circuitry.js:101
237.4 266.7 (anonymous function) raphael-2.1.2.js:1480
249.5 249.5 clone raphael-2.1.2.js:795
239.4 239.4 eve.listeners raphael-2.1.2.js:129
16.2 227.3 setUpMatrix circuitry.js:154
135.4 199.0 newf raphael-2.1.2.js:1210
65.7 152.5 paths raphael-2.1.2.js:1539
1.0 145.5 (anonymous function) step.js:153
2.0 144.5 unhighlight step.js:167
1.0 133.3 R. engine.text raphael-2.1.2.js:6947
1.0 131.3 drawConnections gate.js:208
2.0 130.3 (anonymous function) gate.js:210
108.1 108.1 R.is raphael-2.1.2.js:780
25.3 103.0 e.index math.min.js:29
100.0 100.0 createElementNS
93.9 93.9 get scrollTop
0 90.9 updateQubits circuitry.js:41
0 90.9 onclick index.html:26
22.2 90.9 t.subset math.min.js:27

Continued on next page

64

15.4 Testing Documentation 15 APPENDICES

Table 2 – continued from previous page
Self (ms) Total (ms) Function Source
0 90.9 incrementQubitCount main.js:45
86.9 86.9 setTimeout
1.0 82.8 (anonymous function) step.js:147
2.0 81.8 highlight step.js:160
79.8 79.8 apply
1.0 79.8 getEventPosition raphael-2.1.2.js:3086
78.8 78.8 R. path2string raphael-2.1.2.js:1201
73.7 75.8 Element raphael-2.1.2.js:6356
64.7 67.7 t math.min.js:27
63.6 63.6 repush raphael-2.1.2.js:1204
7.1 61.6 paperproto.circle raphael-2.1.2.js:3661
5.1 55.6 y math.min.js:28
1.0 50.5 unhighlight gate.js:194
0 47.5 (unresolved function)
22.2 46.5 n math.min.js:28
1.0 46.5 a math.min.js:27
45.5 45.5 get style
43.4 43.4 call
3.0 42.4 highlight gate.js:182
0 40.4 (anonymous function) gate.js:101
29.3 29.3 (anonymous function) raphael-2.1.2.js:1483
29.3 29.3 getPropertyValue
2.0 28.3 pathClone raphael-2.1.2.js:2020
8.1 28.3 t.set math.min.js:27
0 28.3 (anonymous function) gate.js:106
3.0 27.3 selectGate toolbox.js:33
0 27.3 (anonymous function) gate.js:96
24.2 26.3 r math.min.js:27
19.2 21.2 t.get math.min.js:27
1.0 19.2 e.zeros math.min.js:29
7.1 18.2 g math.min.js:28
14.1 18.2 paperproto.set raphael-2.1.2.js:3813
12.1 16.2 R.format raphael-2.1.2.js:5643
0 16.2 changeStartState qubit.js:90
0 16.2 (anonymous function) qubit.js:65
14.1 14.1 n.isNumber math.min.js:31
1.0 14.1 n.resize math.min.js:31
1.0 13.1 setUpControls circuitry.js:138
4.0 13.1 o math.min.js:31
2.0 12.1 R. engine.rect raphael-2.1.2.js:6919
1.0 11.1 R. engine.circle raphael-2.1.2.js:6910

Continued on next page

65

15.4 Testing Documentation 15 APPENDICES

Table 2 – continued from previous page
Self (ms) Total (ms) Function Source
8.1 8.1 onSubtreeModified inject actions.js:11
8.1 8.1 l math.min.js:27
1.0 7.1 u math.min.js:27
7.1 7.1 t.min math.min.js:27
3.0 7.1 n.size math.min.js:31
7.1 7.1 setproto.push raphael-2.1.2.js:5185
6.1 6.1 get firstChild
4.0 4.0 slice
0 4.0 (anonymous function) math.min.js:27
4.0 4.0 i math.min.js:31
4.0 4.0 getComputedStyle
3.0 3.0 f math.min.js:28
3.0 3.0 t.isScalar math.min.js:27
3.0 3.0 t math.min.js:27
0 3.0 unhighlight qubit.js:83
0 3.0 (anonymous function) qubit.js:59
0 3.0 i math.min.js:27
0 3.0 t math.min.js:27
1.0 3.0 PauliXGate gate.js:226
0 3.0 HadamardGate gate.js:217
2.0 2.0 (anonymous function) math.min.js:29
2.0 2.0 math.min.js:28
2.0 2.0 math.min.js:28
2.0 2.0 Matrix raphael-2.1.2.js:2804
2.0 2.0 (anonymous function) raphael-2.1.2.js:6304
0 2.0 Gate gate.js:8
1.0 1.0 getElementsByTagName
1.0 1.0 splice
1.0 1.0 e.eye math.min.js:29
1.0 1.0 get documentElement
1.0 1.0 f math.min.js:27
0 1.0 updateHelpText main.js:11
1.0 1.0 set innerHTML
1.0 1.0 get y
0 1.0 highlight qubit.js:76
0 1.0 Step step.js:4
1.0 1.0 get x
0 1.0 i math.min.js:27
0 1.0 (anonymous function) qubit.js:53
0 1.0 PauliZGate gate.js:244
0 1.0 Qubit qubit.js:7

66

15.4 Testing Documentation 15 APPENDICES

Figure 29: Performance Test Run 1-1 Results

Table 3: Performance Test Run 1-2 Results.

Self (ms) Total (ms) Function Source
61541.5 61541.5 (idle)
8.1 19923.2 updateCircuit circuitry.js:35
6.1 19646.2 f raphael-2.1.2.js:3098
3.0 19417.8 drawCircuit circuitry.js:19
38.4 19303.6 draw qubit.js:34
1.0 19246.0 setGate step.js:20
120.3 17047.6 draw step.js:124
0 15322.2 (anonymous function) step.js:141
156.7 12312.1 (anonymous function) raphael-2.1.2.js:5233
305.3 12242.4 setproto.forEach raphael-2.1.2.js:5223
9781.2 9781.2 (garbage collector)

950.1 9734.7
R.(anonymous function).
elproto.(anonymous function)

raphael-2.1.2.js:3431

4664.7 8319.6 e raphael-2.1.2.js:3097
803.6 7547.4 (anonymous function) raphael-2.1.2.js:5235
1190.7 4422.1 (anonymous function) raphael-2.1.2.js:5235
1084.6 4277.6 setFillAndStroke raphael-2.1.2.js:6065
0 3923.8 (anonymous function) step.js:141
3654.9 3654.9 addEventListener
2669.4 2669.4 (program)
100.1 2192.3 paperproto.path raphael-2.1.2.js:3746
22.2 2122.6 drawGate gate.js:113
84.9 2042.8 R. engine.path raphael-2.1.2.js:6444
28.3 1951.8 paperproto.text raphael-2.1.2.js:3791
522.6 1830.5 $ raphael-2.1.2.js:5792
1611.2 1613.2 setAttribute
81.9 1463.6 paperproto.rect raphael-2.1.2.js:3687
131.4 1442.4 elproto.attr raphael-2.1.2.js:6750
35.4 1359.5 tuneText raphael-2.1.2.js:6319
8.1 1121.9 elproto. getBBox raphael-2.1.2.js:6653
1113.9 1113.9 getBBox
26.3 768.2 R. pathToAbsolute raphael-2.1.2.js:2104
0 592.3 updateSteps circuitry.js:52
0 592.3 onclick index.html:27
0 592.3 incrementStepCount main.js:72
571.1 571.1 R.is raphael-2.1.2.js:780
149.6 532.7 R.parsePathString raphael-2.1.2.js:1465
35.4 496.3 R.clear raphael-2.1.2.js:7088

Continued on next page

67

15.4 Testing Documentation 15 APPENDICES

Table 3 – continued from previous page
Self (ms) Total (ms) Function Source
190.0 459.9 eve raphael-2.1.2.js:54
443.7 445.7 removeChild
422.5 425.5 appendChild
9.1 410.4 R. engine.text raphael-2.1.2.js:6947
346.7 346.7 (anonymous function) raphael-2.1.2.js:1548
1.0 299.2 incrementQubitCount main.js:45
0 299.2 onclick index.html:26
268.9 269.9 eve.listeners raphael-2.1.2.js:129
192.0 214.3 (anonymous function) raphael-2.1.2.js:1480
205.2 205.2 set value
193.1 193.1 clone raphael-2.1.2.js:795
56.6 171.8 paths raphael-2.1.2.js:1539
115.2 162.7 newf raphael-2.1.2.js:1210
129.4 129.4 createElementNS
0 127.4 drawConnections gate.js:208
2.0 127.4 (anonymous function) gate.js:210
117.2 117.2 get scrollTop
115.2 115.2 setTimeout
1.0 95.0 unhighlight step.js:167
0 93.0 updateQubits circuitry.js:41
3.0 93.0 getEventPosition raphael-2.1.2.js:3086
1.0 86.9 (anonymous function) step.js:153
86.9 86.9 apply
82.9 82.9 R. path2string raphael-2.1.2.js:1201
7.1 72.8 paperproto.circle raphael-2.1.2.js:3661
65.7 65.7 Element raphael-2.1.2.js:6356
0 63.7 (unresolved function)
56.6 56.6 call
0 55.6 unhighlight gate.js:194
3.0 54.6 highlight step.js:160
2.0 53.6 (anonymous function) step.js:147
51.5 51.5 get style
47.5 47.5 repush raphael-2.1.2.js:1204
46.5 46.5 getPropertyValue
3.0 40.4 pathClone raphael-2.1.2.js:2020
1.0 40.4 (anonymous function) gate.js:101
0 40.4 highlight gate.js:182
1.0 32.3 (anonymous function) gate.js:106
1.0 30.3 (anonymous function) gate.js:96
1.0 29.3 selectGate toolbox.js:33
1.0 28.3 R. engine.circle raphael-2.1.2.js:6910

Continued on next page

68

15.4 Testing Documentation 15 APPENDICES

Table 3 – continued from previous page
Self (ms) Total (ms) Function Source
22.2 22.2 (anonymous function) raphael-2.1.2.js:1483
2.0 22.2 R. engine.rect raphael-2.1.2.js:6919
20.2 21.2 paperproto.set raphael-2.1.2.js:3813
0 16.2 (anonymous function) qubit.js:65
0 16.2 changeStartState qubit.js:90
7.1 14.2 R.format raphael-2.1.2.js:5643
13.1 13.1 setproto.push raphael-2.1.2.js:5185
0 9.1 (anonymous function) step.js:153
7.1 7.1 onSubtreeModified inject actions.js:11
3.0 5.1 (anonymous function) raphael-2.1.2.js:1480
4.0 4.0 set innerHTML
4.0 4.0 get firstChild
0 4.0 updateHelpText main.js:11
0 4.0 HadamardGate gate.js:217
3.0 3.0 (anonymous function) raphael-2.1.2.js:6304
3.0 3.0 slice
3.0 3.0 (anonymous function) raphael-2.1.2.js:1548
3.0 3.0 getElementsByTagName
0 3.0 (anonymous function) step.js:147
2.0 2.0 createTextNode
2.0 2.0 (anonymous function) raphael-2.1.2.js:1483
0 2.0 e.zeros math.min.js:29
1.0 2.0 paperproto.setSize raphael-2.1.2.js:3862
1.0 1.0 push
1.0 1.0 f math.min.js:28
1.0 1.0 f math.min.js:27
1.0 1.0 n.resize math.min.js:31
1.0 1.0 getComputedStyle
1.0 1.0 get defaultView
0 1.0 R. engine.setSize raphael-2.1.2.js:6964
1.0 1.0 get y
0 1.0 unhighlight qubit.js:83
0 1.0 Gate gate.js:8
0 1.0 t math.min.js:27
0 1.0 highlight qubit.js:76
0 1.0 (anonymous function) qubit.js:53
0 1.0 Step step.js:4
0 1.0 (anonymous function) qubit.js:59
0 1.0 y math.min.js:28

Figure 30: Performance Test Run 1-2 Results

69

15.4 Testing Documentation 15 APPENDICES

Table 4: Performance Test Run 1-3 Results.

Self (ms) Total (ms) Function Source
52481.2 52481.2 (idle)
6.1 20163.4 updateCircuit circuitry.js:35
9.1 19875.0 f raphael-2.1.2.js:3098
9.1 19670.6 drawCircuit circuitry.js:19
37.4 19549.2 draw qubit.js:34
0 19489.5 setGate step.js:20
118.4 17865.4 draw step.js:124
2.0 13520.5 (anonymous function) step.js:141
123.4 12470.2 (anonymous function) raphael-2.1.2.js:5233
249.9 12424.6 setproto.forEach raphael-2.1.2.js:5223

946.1 9829.2
R.(anonymous function).
elproto.(anonymous function)

raphael-2.1.2.js:3431

4698.1 8474.3 e raphael-2.1.2.js:3097
1646.3 8455.1 (anonymous function) raphael-2.1.2.js:5235
8393.4 8393.4 (garbage collector)
0 5971.0 (anonymous function) step.js:141
1110.0 4321.7 setFillAndStroke raphael-2.1.2.js:6065
3776.3 3776.3 addEventListener
483.7 3756.0 (anonymous function) raphael-2.1.2.js:5235
2603.5 2603.5 (program)
94.1 2190.7 paperproto.path raphael-2.1.2.js:3746
51.6 2152.2 drawGate gate.js:113
84.0 2060.1 R. engine.path raphael-2.1.2.js:6444
21.2 1919.5 paperproto.text raphael-2.1.2.js:3791
500.9 1841.6 $ raphael-2.1.2.js:5792
1683.7 1686.8 setAttribute
135.6 1563.3 elproto.attr raphael-2.1.2.js:6750
86.0 1422.7 paperproto.rect raphael-2.1.2.js:3687
44.5 1365.0 tuneText raphael-2.1.2.js:6319
4.0 1116.1 elproto. getBBox raphael-2.1.2.js:6653
1111.0 1111.0 getBBox
31.4 736.6 R. pathToAbsolute raphael-2.1.2.js:2104
0 587.9 updateSteps circuitry.js:52
0 587.9 incrementStepCount main.js:72
0 587.9 onclick index.html:27
243.9 520.1 eve raphael-2.1.2.js:54
513.0 513.0 R.is raphael-2.1.2.js:780
116.4 491.8 R.parsePathString raphael-2.1.2.js:1465
45.5 485.7 R.clear raphael-2.1.2.js:7088

Continued on next page

70

15.4 Testing Documentation 15 APPENDICES

Table 4 – continued from previous page
Self (ms) Total (ms) Function Source
424.0 424.0 removeChild
9.1 413.9 R. engine.text raphael-2.1.2.js:6947
397.7 402.7 appendChild
351.1 351.1 (anonymous function) raphael-2.1.2.js:1548
10.1 328.9 evaluateCircuit circuitry.js:65
0 328.9 onclick index.html:25
2.0 307.6 (anonymous function) circuitry.js:101
276.2 276.2 eve.listeners raphael-2.1.2.js:129
181.1 212.5 (anonymous function) raphael-2.1.2.js:1480
208.4 208.4 clone raphael-2.1.2.js:795
22.3 208.4 setUpMatrix circuitry.js:154
135.6 179.1 newf raphael-2.1.2.js:1210
51.6 149.8 paths raphael-2.1.2.js:1539
2.0 127.5 drawConnections gate.js:208
0 125.5 (anonymous function) gate.js:210
38.5 113.3 e.index math.min.js:29
106.2 106.2 createElementNS
101.2 101.2 apply
98.2 98.2 setTimeout
1.0 96.1 onclick index.html:26
1.0 96.1 unhighlight step.js:167
0 95.1 updateQubits circuitry.js:41
0 95.1 incrementQubitCount main.js:45
13.2 94.1 y math.min.js:28
90.1 90.1 get scrollTop
89.0 89.0 R. path2string raphael-2.1.2.js:1201
3.0 84.0 paperproto.circle raphael-2.1.2.js:3661
0 83.0 (anonymous function) step.js:153
2.0 78.9 getEventPosition raphael-2.1.2.js:3086
1.0 78.9 highlight step.js:160
23.3 75.9 n math.min.js:28
75.9 75.9 Element raphael-2.1.2.js:6356
5.1 73.9 R. engine.rect raphael-2.1.2.js:6919
71.8 73.9 t math.min.js:27
1.0 71.8 (anonymous function) step.js:147
0 64.8 (unresolved function)
62.7 62.7 get style
15.2 61.7 t.subset math.min.js:27
59.7 59.7 call
2.0 51.6 unhighlight gate.js:194
5.1 48.6 pathClone raphael-2.1.2.js:2020

Continued on next page

71

15.4 Testing Documentation 15 APPENDICES

Table 4 – continued from previous page
Self (ms) Total (ms) Function Source
43.5 43.5 repush raphael-2.1.2.js:1204
4.0 43.5 a math.min.js:27
29.3 41.5 g math.min.js:28
37.4 37.4 getPropertyValue
2.0 35.4 R. engine.circle raphael-2.1.2.js:6910
1.0 32.4 highlight gate.js:182
0 32.4 (anonymous function) gate.js:101
31.4 31.4 (anonymous function) raphael-2.1.2.js:1483
0 29.3 (anonymous function) gate.js:106
1.0 23.3 (anonymous function) gate.js:96
0 22.3 selectGate toolbox.js:33
0 20.2 e.zeros math.min.js:29
10.1 17.2 t.set math.min.js:27
4.0 17.2 n.size math.min.js:31
10.1 16.2 n.resize math.min.js:31
0 15.2 changeStartState qubit.js:90
0 15.2 setUpControls circuitry.js:138
0 15.2 (anonymous function) qubit.js:65
13.2 15.2 paperproto.set raphael-2.1.2.js:3813
15.2 15.2 n.isNumber math.min.js:31
0 13.2 (anonymous function) step.js:153
0 12.1 n.validate math.min.js:31
2.0 12.1 i math.min.js:31
11.1 11.1 i math.min.js:31
6.1 11.1 R.format raphael-2.1.2.js:5643
11.1 11.1 setproto.push raphael-2.1.2.js:5185
8.1 10.1 t.min math.min.js:27
10.1 10.1 r math.min.js:27
8.1 8.1 onSubtreeModified inject actions.js:11
0 8.1 (anonymous function) step.js:147
7.1 7.1 l math.min.js:27
7.1 7.1 (anonymous function) raphael-2.1.2.js:1480
4.0 6.1 t.isScalar math.min.js:27
3.0 6.1 o math.min.js:31
0 5.1 t math.min.js:27
0 4.0 HadamardGate gate.js:217
3.0 4.0 f math.min.js:28
0 4.0 PauliXGate gate.js:226
3.0 3.0 n.argsToArray math.min.js:28
3.0 3.0 get documentElement
1.0 3.0 h math.min.js:28

Continued on next page

72

15.4 Testing Documentation 15 APPENDICES

Table 4 – continued from previous page
Self (ms) Total (ms) Function Source
3.0 3.0 get y
3.0 3.0 f math.min.js:27
3.0 3.0 createTextNode
0 3.0 Gate gate.js:8
0 2.0 e.eye math.min.js:29
0 2.0 i math.min.js:27
1.0 2.0 i math.min.js:27
2.0 2.0 t.get math.min.js:27
2.0 2.0 set innerHTML
0 2.0 u math.min.js:27
2.0 2.0 t.min math.min.js:27
0 2.0 e.matrix math.min.js:29
0 1.0 paperproto.setSize raphael-2.1.2.js:3862
0 1.0 e.min math.min.js:29
0 1.0 highlight qubit.js:76
0 1.0 t math.min.js:29
1.0 1.0 c math.min.js:28
1.0 1.0 splice
0 1.0 (anonymous function) qubit.js:53
0 1.0 t.resize math.min.js:27
1.0 1.0 get scrollLeft
0 1.0 R. engine.setSize raphael-2.1.2.js:6964
1.0 1.0 get body
0 1.0 updateEvaluationText main.js:19
1.0 1.0 pad circuitry.js:131
1.0 1.0 (anonymous function) math.min.js:29
1.0 1.0 getElementsByTagName
1.0 1.0 get firstChild
0 1.0 updateHelpText main.js:11
1.0 1.0 Set raphael-2.1.2.js:5164
1.0 1.0 (anonymous function) raphael-2.1.2.js:6304
1.0 1.0 R. engine.rect raphael-2.1.2.js:6919
1.0 1.0 getComputedStyle

Figure 31: Performance Test Run 1-3 Results

Table 5: Performance Test Run 2-1 Results.

Self (ms) Total (ms) Function Source

Continued on next page

73

15.4 Testing Documentation 15 APPENDICES

Table 5 – continued from previous page
Self (ms) Total (ms) Function Source
70099.9 70099.9 (idle)
2967.8 2967.8 (program)
6.1 714.7 f raphael-2.1.2.js:3098
28.3 429.0 elproto.attr raphael-2.1.2.js:6750
265.5 385.6 setFillAndStroke raphael-2.1.2.js:6065
0 336.1 evaluate controller.js:44
0 335.1 evaluateCircuit evaluator.js:1
5.0 334.1 (anonymous function) evaluator.js:4
24.2 254.4 setUpMatrix evaluator.js:49
1.0 203.9 drawStep painter.js:204
1.0 166.6 (anonymous function) painter.js:239
1.0 165.5 unhighlight step.js:136
0 162.5 (anonymous function) painter.js:226
2.0 126.2 (anonymous function) painter.js:233
46.4 124.2 e.exports.e.index math.min.js:29
0 124.2 highlight step.js:129
116.1 116.1 get scrollTop get scrollTop
1.0 90.9 drawGate painter.js:71
21.2 89.8 eve raphael-2.1.2.js:54
26.2 87.8 t.subset math.min.js:27
72.7 75.7 t math.min.js:27
20.2 71.7 y math.min.js:28
67.6 67.6 eve.listeners raphael-2.1.2.js:129
22.2 66.6 n math.min.js:28
0 65.6 paperproto.path raphael-2.1.2.js:3746
1.0 64.6 R. engine.path raphael-2.1.2.js:6444
1.0 64.6 getEventPosition raphael-2.1.2.js:3086
2.0 62.6 unhighlight tool.js:26
61.6 61.6 setAttribute
0 55.5 setproto.forEach raphael-2.1.2.js:5223
6.1 54.5 a math.min.js:27
20.2 52.5 $ raphael-2.1.2.js:5792
0 49.5 highlight tool.js:16
0 48.5 drawQubit painter.js:153
0 47.4 paperproto.text raphael-2.1.2.js:3791
0 47.4 R. engine.text raphael-2.1.2.js:6947
0 46.4 (anonymous function) painter.js:55
30.3 46.4 elproto.remove raphael-2.1.2.js:6632
0 38.4 (anonymous function) painter.js:60
3.0 37.3 paperproto.rect raphael-2.1.2.js:3687
0 36.3 (anonymous function) painter.js:206

Continued on next page

74

15.4 Testing Documentation 15 APPENDICES

Table 5 – continued from previous page
Self (ms) Total (ms) Function Source
0 34.3 (anonymous function) painter.js:194
2.0 33.3 tuneText raphael-2.1.2.js:6319
32.3 32.3 r math.min.js:27
2.0 32.3 incrementStepCount controller.js:145
31.3 31.3 (garbage collector)
0 31.3 setUpControls evaluator.js:29
0 30.3 (anonymous function) controller.js:87
17.2 30.3 t.set math.min.js:27
1.0 29.3 incrementQubitCount controller.js:118
0 28.3 (anonymous function) controller.js:69
0 28.3 selectTool toolbox.js:30
0 28.3 (anonymous function) painter.js:49
0 28.3 updateQubitCount controller.js:65
0 24.2 elproto. getBBox raphael-2.1.2.js:6653
24.2 24.2 getBBox
0 23.2 setGate step.js:9
0 20.2 (anonymous function) painter.js:189
9.1 19.2 g math.min.js:28
15.1 19.2 R.is raphael-2.1.2.js:780
16.2 16.2 appendChild
0 16.2 e.exports.e.zeros math.min.js:29
0 15.1 R. pathToAbsolute raphael-2.1.2.js:2104
15.1 15.1 n.isNumber math.min.js:31
9.1 12.1 newf raphael-2.1.2.js:1210
0 11.1 n.resize math.min.js:31
1.0 11.1 o math.min.js:31
3.0 10.1 R.parsePathString raphael-2.1.2.js:1465
4.0 9.1 (anonymous function) raphael-2.1.2.js:5235
1.0 9.1 (anonymous function) raphael-2.1.2.js:5233
0 9.1 (anonymous function) painter.js:73
9.1 9.1 removeChild
0 9.1 t.get math.min.js:27
0 8.1 t math.min.js:27
0 8.1 R. engine.rect raphael-2.1.2.js:6919
8.1 8.1 (anonymous function) raphael-2.1.2.js:1548
6.1 7.1 t.isScalar math.min.js:27
3.0 7.1 n.size math.min.js:31
0 7.1 u math.min.js:27
7.1 7.1 setFillAndStroke raphael-2.1.2.js:6065
0 6.1 (anonymous function) painter.js:141
6.1 6.1 l math.min.js:27

Continued on next page

75

15.4 Testing Documentation 15 APPENDICES

Table 5 – continued from previous page
Self (ms) Total (ms) Function Source
6.1 6.1 t.min math.min.js:27
0 6.1 updateStepCount controller.js:84
6.1 6.1 get style
5.0 6.1 (anonymous function) raphael-2.1.2.js:1480
4.0 4.0 i math.min.js:31
1.0 4.0 R. engine.circle raphael-2.1.2.js:6910

2.0 4.0
R.(anonymous function).
elproto.(anonymous function)

raphael-2.1.2.js:3431

0 4.0 paperproto.circle raphael-2.1.2.js:3661
3.0 3.0 repush raphael-2.1.2.js:1204
0 3.0 (anonymous function) raphael-2.1.2.js:7115
3.0 3.0 R. path2string raphael-2.1.2.js:1201
2.0 3.0 i math.min.js:27
2.0 3.0 paths raphael-2.1.2.js:1539
0 3.0 (anonymous function) raphael-2.1.2.js:7117
1.0 3.0 pathClone raphael-2.1.2.js:2020
3.0 3.0 eve.off.eve.unbind raphael-2.1.2.js:288
3.0 3.0 R. removedFactory raphael-2.1.2.js:1946
0 3.0 (anonymous function) math.min.js:27
3.0 3.0 f math.min.js:28
3.0 3.0 f math.min.js:27
2.0 2.0 f raphael-2.1.2.js:3098
2.0 2.0 e raphael-2.1.2.js:3097
2.0 2.0 clone raphael-2.1.2.js:795
2.0 2.0 createElementNS
1.0 1.0 getComputedStyle
1.0 1.0 drawQubit painter.js:153
1.0 1.0 Element raphael-2.1.2.js:6356
1.0 1.0 getElementById
0 1.0 h math.min.js:28
1.0 1.0 repush raphael-2.1.2.js:1204
1.0 1.0 call
0 1.0 e.exports.e.eye math.min.js:29
1.0 1.0 setTimeout
1.0 1.0 (anonymous function) circuit.js:79
1.0 1.0 (anonymous function) raphael-2.1.2.js:1483
1.0 1.0 get documentElement
1.0 1.0 apply
1.0 1.0 Element raphael-2.1.2.js:6356
1.0 1.0 get x
1.0 1.0 t.resize math.min.js:27

Continued on next page

76

15.4 Testing Documentation 15 APPENDICES

Table 5 – continued from previous page
Self (ms) Total (ms) Function Source
0 1.0 updateHelpText controller.js:36
1.0 1.0 slice
0 1.0 getInitialAmplitudes circuit.js:70
0 1.0 (unresolved function)
1.0 1.0 concat
0 1.0 n.validate math.min.js:31
1.0 1.0 t math.min.js:27
1.0 1.0 (anonymous function) math.min.js:29
1.0 1.0 setproto.push raphael-2.1.2.js:5185
0 1.0 highlight qubit.js:32
1.0 1.0 get tagName
0 1.0 (anonymous function) painter.js:177
0 1.0 (anonymous function) painter.js:155

Figure 32: Performance Test Run 2-1 Results

Table 6: Performance Test Run 2-2 Results.

Self (ms) Total (ms) Function Source
71110.7 71110.7 (idle)
2845.4 2845.4 (program)
5.0 688.9 f raphael-2.1.2.js:3098
21.2 399.4 elproto.attr raphael-2.1.2.js:6750
245.1 369.2 setFillAndStroke raphael-2.1.2.js:6065
0 287.5 evaluate controller.js:44
0 286.5 evaluateCircuit evaluator.js:1
2.0 285.4 (anonymous function) evaluator.js:4
16.1 213.8 setUpMatrix evaluator.js:49
1.0 200.7 drawStep painter.js:204
2.0 161.4 (anonymous function) painter.js:226
1.0 153.3 (anonymous function) painter.js:239
2.0 152.3 unhighlight step.js:136
114.0 114.0 get scrollTop
1.0 108.9 (anonymous function) painter.js:233
1.0 107.9 highlight step.js:129
37.3 101.9 e.index math.min.js:29
28.2 87.8 eve raphael-2.1.2.js:54
5.0 87.8 drawGate painter.js:71
16.1 72.6 t.subset math.min.js:27
11.1 68.6 y math.min.js:28

Continued on next page

77

15.4 Testing Documentation 15 APPENDICES

Table 6 – continued from previous page
Self (ms) Total (ms) Function Source
1.0 64.6 unhighlight tool.js:26
21.2 62.5 n math.min.js:28
58.5 59.5 t math.min.js:27
1.0 59.5 getEventPosition raphael-2.1.2.js:3086
59.5 59.5 eve.listeners raphael-2.1.2.js:129
3.0 58.5 paperproto.path raphael-2.1.2.js:3746
57.5 57.5 setAttribute
0 55.5 setproto.forEach raphael-2.1.2.js:5223
3.0 54.5 R. engine.path raphael-2.1.2.js:6444
3.0 54.5 a math.min.js:27
1.0 53.5 highlight tool.js:16
1.0 49.4 (anonymous function) painter.js:55
47.4 47.4 (garbage collector)
26.2 45.4 elproto.remove raphael-2.1.2.js:6632
2.0 45.4 drawQubit painter.js:153
14.1 45.4 $ raphael-2.1.2.js:5792
0 44.4 (anonymous function) painter.js:60
0 43.4 paperproto.text raphael-2.1.2.js:3791
1.0 43.4 R. engine.text raphael-2.1.2.js:6947
0 37.3 (anonymous function) painter.js:206
5.0 36.3 paperproto.rect raphael-2.1.2.js:3687
0 34.3 (anonymous function) painter.js:194
0 33.3 updateStepCount controller.js:84
1.0 32.3 incrementStepCount controller.js:145
30.3 32.3 r math.min.js:27
15.1 31.3 t.set math.min.js:27
0 30.3 (anonymous function) controller.js:87
4.0 30.3 tuneText raphael-2.1.2.js:6319
1.0 27.2 (anonymous function) painter.js:49
0 26.2 selectTool toolbox.js:30
0 25.2 (anonymous function) controller.js:69
0 25.2 incrementQubitCount controller.js:118
0 25.2 updateQubitCount controller.js:65
1.0 23.2 setGate step.js:9
12.1 23.2 g math.min.js:28
0 23.2 e.zeros math.min.js:29
21.2 21.2 n.isNumber math.min.js:31
0 21.2 elproto. getBBox raphael-2.1.2.js:6653
21.2 21.2 getBBox
0 20.2 (anonymous function) painter.js:189
1.0 19.2 R. pathToAbsolute raphael-2.1.2.js:2104

Continued on next page

78

15.4 Testing Documentation 15 APPENDICES

Table 6 – continued from previous page
Self (ms) Total (ms) Function Source
0 17.1 n.resize math.min.js:31
6.1 17.1 newf raphael-2.1.2.js:1210
2.0 16.1 o math.min.js:31
3.0 13.1 R.parsePathString raphael-2.1.2.js:1465
12.1 12.1 repush raphael-2.1.2.js:1204
0 12.1 setUpControls evaluator.js:29
11.1 11.1 R.is raphael-2.1.2.js:780
11.1 11.1 appendChild
2.0 10.1 R. engine.rect raphael-2.1.2.js:6919
3.0 9.1 (anonymous function) raphael-2.1.2.js:5235
9.1 9.1 eve.off.eve.unbind raphael-2.1.2.js:288
0 9.1 (anonymous function) raphael-2.1.2.js:5233
2.0 8.1 t math.min.js:27
7.1 7.1 removeChild
7.1 7.1 t.min math.min.js:27
6.1 7.1 t.isScalar math.min.js:27
1.0 7.1 (anonymous function) painter.js:141
5.0 7.1 l math.min.js:27
7.1 7.1 (anonymous function) raphael-2.1.2.js:1548
0 7.1 (anonymous function) painter.js:73
2.0 6.1 (anonymous function) math.min.js:27
6.1 6.1 createElementNS
0 6.1 paperproto.circle raphael-2.1.2.js:3661
2.0 6.1 R. engine.circle raphael-2.1.2.js:6910

2.0 6.1
R.(anonymous function).
elproto.(anonymous function)

raphael-2.1.2.js:3431

0 5.0 (anonymous function) raphael-2.1.2.js:7115
5.0 5.0 i math.min.js:31
1.0 5.0 (anonymous function) raphael-2.1.2.js:7117
5.0 5.0 clone raphael-2.1.2.js:795
0 5.0 pathClone raphael-2.1.2.js:2020
1.0 5.0 paths raphael-2.1.2.js:1539
4.0 5.0 (anonymous function) raphael-2.1.2.js:1480
0 5.0 n.size math.min.js:31
5.0 5.0 get style
1.0 4.0 e raphael-2.1.2.js:3097
4.0 4.0 f math.min.js:27
4.0 4.0 setTimeout
4.0 4.0 R. path2string raphael-2.1.2.js:1201
1.0 4.0 u math.min.js:27
0 3.0 (anonymous function) painter.js:183

Continued on next page

79

15.4 Testing Documentation 15 APPENDICES

Table 6 – continued from previous page
Self (ms) Total (ms) Function Source
3.0 3.0 addEventListener
0 3.0 unhighlight qubit.js:39
3.0 3.0 set innerHTML
0 3.0 updateHelpText controller.js:36
3.0 3.0 apply
2.0 2.0 call
0 2.0 decrementStepCount controller.js:124
0 2.0 (anonymous function) controller.js:90
2.0 2.0 R. removedFactory raphael-2.1.2.js:1946
0 2.0 (anonymous function) controller.js:91
0 2.0 t.get math.min.js:27
2.0 2.0 t.size math.min.js:27
0 2.0 (unresolved function)
2.0 2.0 (anonymous function) math.min.js:29
2.0 2.0 paperproto.set raphael-2.1.2.js:3813
1.0 1.0 get parentNode
0 1.0 getMatrix matrix-expert.js:57
0 1.0 e.eye math.min.js:29
1.0 1.0 (anonymous function) raphael-2.1.2.js:1483
0 1.0 R. engine.setSize raphael-2.1.2.js:6964
0 1.0 (anonymous function) painter.js:177
1.0 1.0 f math.min.js:28
0 1.0 t.resize math.min.js:27
0 1.0 paperproto.setSize raphael-2.1.2.js:3862
0 1.0 e.clone math.min.js:29
1.0 1.0 getPropertyValue
1.0 1.0 toString
1.0 1.0 Element raphael-2.1.2.js:6356
0 1.0 getInitialAmplitudes circuit.js:70
1.0 1.0 (anonymous function) math.min.js:31
0 1.0 highlight qubit.js:32

Figure 33: Performance Test Run 2-2 Results

Table 7: Performance Test Run 2-3 Results.

Self (ms) Total (ms) Function Source
65788.8 65788.8 (idle)
2930.3 2930.3 (program)
6.1 709.6 f raphael-2.1.2.js:3098

Continued on next page

80

15.4 Testing Documentation 15 APPENDICES

Table 7 – continued from previous page
Self (ms) Total (ms) Function Source
24.2 421.9 elproto.attr raphael-2.1.2.js:6750
270.5 386.6 setFillAndStroke raphael-2.1.2.js:6065
1.0 306.9 evaluate controller.js:44
3.0 305.8 (anonymous function) evaluator.js:4
0 305.8 evaluateCircuit evaluator.js:1
18.2 230.1 setUpMatrix evaluator.js:49
4.0 210.0 drawStep painter.js:204
0 166.5 (anonymous function) painter.js:226
2.0 150.4 unhighlight step.js:136
0 150.4 (anonymous function) painter.js:239
47.4 116.1 e.index math.min.js:29
115.1 115.1 get scrollTop
1.0 107.0 (anonymous function) painter.js:233
2.0 106.0 highlight step.js:129
0 84.8 drawGate painter.js:71
22.2 82.8 eve raphael-2.1.2.js:54
11.1 73.7 t.subset math.min.js:27
1.0 70.7 getEventPosition raphael-2.1.2.js:3086
1.0 68.6 unhighlight tool.js:26
13.1 66.6 y math.min.js:28
63.6 66.6 t math.min.js:27
21.2 61.6 n math.min.js:28
60.6 60.6 eve.listeners raphael-2.1.2.js:129
0 59.6 highlight tool.js:16
59.6 59.6 setAttribute
0 57.5 (anonymous function) painter.js:55
0 57.5 setproto.forEach raphael-2.1.2.js:5223
3.0 55.5 a math.min.js:27
4.0 54.5 paperproto.path raphael-2.1.2.js:3746
1.0 49.5 R. engine.path raphael-2.1.2.js:6444
0 49.5 (anonymous function) painter.js:60
3.0 48.5 R. engine.text raphael-2.1.2.js:6947
0 48.5 paperproto.text raphael-2.1.2.js:3791
27.3 46.4 elproto.remove raphael-2.1.2.js:6632
13.1 45.4 $ raphael-2.1.2.js:5792
0 42.4 drawQubit painter.js:153
40.4 40.4 (garbage collector)
0 38.4 (anonymous function) painter.js:206
3.0 38.4 paperproto.rect raphael-2.1.2.js:3687
37.3 37.3 r math.min.js:27
0 33.3 updateStepCount controller.js:84

Continued on next page

81

15.4 Testing Documentation 15 APPENDICES

Table 7 – continued from previous page
Self (ms) Total (ms) Function Source
4.0 32.3 tuneText raphael-2.1.2.js:6319
0 32.3 (anonymous function) painter.js:194
14.1 32.3 t.set math.min.js:27
1.0 32.3 incrementStepCount controller.js:145
0 30.3 (anonymous function) controller.js:87
26.2 26.2 R.is raphael-2.1.2.js:780
15.1 25.2 g math.min.js:28
1.0 24.2 elproto. getBBox raphael-2.1.2.js:6653
0 24.2 updateQubitCount controller.js:65
0 24.2 incrementQubitCount controller.js:118
23.2 23.2 getBBox
0 23.2 (anonymous function) controller.js:69
0 22.2 selectTool toolbox.js:30
0 22.2 (anonymous function) painter.js:49
1.0 21.2 e.zeros math.min.js:29
0 19.2 setGate step.js:9
0 19.2 (anonymous function) painter.js:189
2.0 18.2 o math.min.js:31
0 18.2 n.resize math.min.js:31
0 17.2 R. pathToAbsolute raphael-2.1.2.js:2104
16.2 16.2 n.isNumber math.min.js:31
7.1 12.1 newf raphael-2.1.2.js:1210
0 12.1 setUpControls evaluator.js:29
2.0 11.1 (anonymous function) raphael-2.1.2.js:5235
0 11.1 (anonymous function) raphael-2.1.2.js:5233
3.0 11.1 R.parsePathString raphael-2.1.2.js:1465
10.1 10.1 (anonymous function) raphael-2.1.2.js:1548
10.1 10.1 removeChild
10.1 10.1 appendChild

2.0 9.1
R.(anonymous function).
elproto.(anonymous function)

raphael-2.1.2.js:3431

0 8.1 pathClone raphael-2.1.2.js:2020
8.1 8.1 clone raphael-2.1.2.js:795
1.0 8.1 unhighlight qubit.js:39
4.0 8.1 t.isScalar math.min.js:27
0 8.1 (anonymous function) painter.js:183
8.1 8.1 l math.min.js:27
0 7.1 R. engine.rect raphael-2.1.2.js:6919
0 7.1 paperproto.circle raphael-2.1.2.js:3661
7.1 7.1 eve.off.eve.unbind raphael-2.1.2.js:288
3.0 7.1 e raphael-2.1.2.js:3097

Continued on next page

82

15.4 Testing Documentation 15 APPENDICES

Table 7 – continued from previous page
Self (ms) Total (ms) Function Source
2.0 7.1 R. engine.circle raphael-2.1.2.js:6910
7.1 7.1 t.min math.min.js:27
3.0 7.1 t.get math.min.js:27
6.1 6.1 get style
0 6.1 (anonymous function) painter.js:73
6.1 6.1 f math.min.js:28
0 6.1 (anonymous function) painter.js:177
0 6.1 highlight qubit.js:32
5.0 5.0 repush raphael-2.1.2.js:1204
0 5.0 (anonymous function) painter.js:141
4.0 4.0 addEventListener
0 4.0 (anonymous function) raphael-2.1.2.js:7115
0 4.0 (anonymous function) math.min.js:27
1.0 4.0 t math.min.js:27
0 4.0 (anonymous function) raphael-2.1.2.js:7117
1.0 4.0 n.size math.min.js:31
4.0 4.0 (anonymous function) raphael-2.1.2.js:1480
4.0 4.0 R. path2string raphael-2.1.2.js:1201
3.0 3.0 i math.min.js:31
3.0 3.0 createElementNS
0 3.0 h math.min.js:28
0 2.0 R. engine.setSize raphael-2.1.2.js:6964
0 2.0 decrementStepCount controller.js:124
0 2.0 paperproto.setSize raphael-2.1.2.js:3862
0 2.0 (anonymous function) controller.js:90
0 2.0 (anonymous function) controller.js:91
2.0 2.0 R. removedFactory raphael-2.1.2.js:1946
0 2.0 u math.min.js:27
1.0 2.0 paths raphael-2.1.2.js:1539
2.0 2.0 (anonymous function) math.min.js:29
1.0 1.0 call
0 1.0 e.eye math.min.js:29
0 1.0 R.format raphael-2.1.2.js:5643
0 1.0 updateHelpText controller.js:36
0 1.0 (unresolved function)
0 1.0 Element raphael-2.1.2.js:6356
1.0 1.0 setproto.push raphael-2.1.2.js:5185
1.0 1.0 (anonymous function) raphael-2.1.2.js:6238
1.0 1.0 n.toNumber math.min.js:31
1.0 1.0 setTimeout
0 1.0 t.resize math.min.js:27

Continued on next page

83

15.5 Analysis Documentation 15 APPENDICES

Table 7 – continued from previous page
Self (ms) Total (ms) Function Source
1.0 1.0 paperproto.set raphael-2.1.2.js:3813
1.0 1.0 R.matrix raphael-2.1.2.js:2801
1.0 1.0 get x
1.0 1.0 (anonymous function) math.min.js:27
1.0 1.0 f math.min.js:27
1.0 1.0 set innerHTML

Figure 34: Performance Test Run 2-3 Results

15.5 Analysis Documentation

Table 8: Evaluator Analysis.

Time (ms)
Flag Iterations Gates 1 2 3 Avg.

0
1 22 20 12 18 16.67
2 39 29 24 23 25.33
3 56 37 65 33 45.00

1
1 20 17 12 11 13.33
2 35 21 35 22 26.00
3 50 28 27 41 32.00

2
1 20 12 16 12 13.33
2 35 19 18 16 17.67
3 50 28 27 41 32.00

3
1 18 12 10 12 11.33
2 31 19 18 16 17.67
3 44 38 26 28 30.67

4
1 29 59 44 40 47.67
2 52 80 75 70 75.00
3 75 137 102 137 125.33

5
1 27 40 36 67 47.67
2 48 69 66 68 67.67
3 69 97 97 99 97.67

6
1 27 40 36 35 37.00
2 48 67 66 63 65.33
3 69 125 100 99 108.00

7
1 25 36 33 32 33.67
2 44 89 61 62 70.67

Continued on next page

84

15.5 Analysis Documentation 15 APPENDICES

Table 8 – continued from previous page
Time (ms)

Flag Iterations Gates 1 2 3 Avg.
3 63 93 92 91 92.00

8
1 38 152 178 137 155.67
2 69 330 334 312 325.33
3 100 438 429 437 434.67

9
1 36 132 130 160 140.67
2 65 270 267 301 279.33
3 94 418 430 427 425.00

10
1 36 134 131 151 138.67
2 55 283 232 258 257.67
3 84 383 372 342 365.67

11
1 34 140 139 155 144.67
2 51 290 270 260 273.33
3 78 375 359 326 353.33

12
1 36 145 150 157 150.67
2 55 300 290 280 290.00
3 84 345 372 377 364.67

13
1 34 140 145 147 144.00
2 51 305 295 280 293.33
3 78 362 357 355 358.00

14
1 34 150 143 147 146.67
2 51 310 279 285 291.33
3 78 363 350 349 354.00

15
1 32 155 145 149 149.67
2 47 256 231 242 243.00
3 72 367 348 352 355.67

16
1 47 564 535 529 542.67
2 86 1122 1137 1158 1139.00
3 125 1620 1622 1596 1612.67

17
1 45 510 505 514 509.67
2 82 1050 1080 1056 1062.00
3 119 1580 1530 1525 1545.00

18
1 45 503 504 500 502.33
2 82 1065 1070 1055 1063.33
3 119 1588 1535 1540 1554.33

19
1 43 499 490 505 498.00
2 78 990 1002 1005 999.00
3 113 1550 1560 1500 1536.67

20
1 45 507 510 512 509.67
2 82 1080 1075 1083 1079.33

Continued on next page

85

15.5 Analysis Documentation 15 APPENDICES

Table 8 – continued from previous page
Time (ms)

Flag Iterations Gates 1 2 3 Avg.
3 119 1600 1558 1569 1575.67

21
1 43 485 487 491 487.67
2 78 996 999 1001 998.67
3 113 1543 1540 1570 1551.00

22
1 43 493 453 450 465.33
2 78 1010 1003 989 1000.67
3 113 1551 1564 1533 1549.33

23
1 41 501 453 448 467.33
2 74 943 956 947 948.67
3 107 1503 1506 1497 1502.00

24
1 45 516 519 507 514.00
2 82 1101 1114 1092 1102.33
3 119 1624 1579 1588 1597.00

25
1 43 475 481 492 482.67
2 78 1015 1026 991 1010.67
3 113 1576 1586 1534 1565.33

26
1 43 460 471 499 476.67
2 78 1054 1037 1021 1037.33
3 113 1568 1549 1503 1540.00

27
1 41 403 434 426 421.00
2 74 957 963 971 963.67
3 107 1504 1483 1470 1485.67

28
1 43 464 457 471 464.00
2 78 1064 1072 1052 1062.67
3 113 1601 1589 1530 1573.33

29
1 41 405 416 413 411.33
2 74 977 989 919 961.67
3 107 1548 1543 1501 1530.67

30
1 41 411 426 439 425.33
2 74 1016 975 989 993.33
3 107 1573 1590 1552 1571.67

31
1 39 401 415 423 413.00
2 70 978 963 947 962.67
3 101 1462 1434 1447 1447.67

Figure 35: Evaluator Analysis

86

