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1 Introduction

Trigonometry is generally considered bashy, and perhaps that is in its nature.
In fact, throughout this article, I will refer to applying complex numbers into
trig as a ”bash”, but that is not what is really meant. I truly believe that by
removing all the geometric nonsense that is confused with trigonometry, which
is easily done with complex numbers, one can see the elegance behind it.

Within this article, you will learn how to solve some quite advanced problems
involving trigonometric identities by applying complex numbers to them. If
you are not comfortable with this subject, you may consider reading ”Complex
Numbers in Trig Identities I”.

Prerequisites

-Know what complex numbers are and be familiar with standard/polar forms
-Have a good trig foundation: You should know how to find 2 cos 15 sin 15.

Sample problem you should be able to do easily:
Determine tan−1 2 + tan−1 3
Note: unless π is used, note that all angles are in degrees, despite not having

degree signs.
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2 Euler’s Formula and Basic Formulas for Sin,
Cos

2.1 An Elementary Proof of Euler’s Formula

We will begin with an equation that everyone who is reading this should know:

eix = cosx+ i sinx.

For many, this equation, known as Euler’s Formula, has been memorized, but
the proof has not, because the many proofs of Euler’s Formula mostly require
calculus. Thus, it would be nice to present an elementary proof requiring very
little calculus.

Proof:
By definition e = (1 + z

n )
n
z as n approaches infinity.

Thus, ez = (1 + z
n )n as n approaches infinity. We will omit ”as n approaches

infinity” after this point, as it should be understood by the reader.
Now, we are trying to prove eix = cosx+ i sinx, so it makes sense to write

z = ix. Then
eix = (1 + ix

n )n. It’s quite hard to evaluate the limit of something like this
(without using circular reasoning and ending up with eix ) so we will try to find
a pattern among the numbers

a = 1 + ix
n , a

2, ...an.

We will look at the argument and the magnitude separately. The magnitude
of an is obviously

(1 + x
n )

n
2 which approaches 1 as n approaches infinity. (It’s much easier to

be sure of this since there isn’t a pesky i term! That’s the reason we separated
it into magnitude and argument). We conclude that whatever the limit of an

is, it will have magnitude 1.

Now we look at the angle: The sequence of arguments of the complex num-
bers a, a2, ...an is obviously non-decreasing (at least until we go through a full
unit circle, which we will disregard). The following may seem sketchy or non
rigorous, but notice that multiplication by a each time causes a point to be
rotated by a certain angle.

Take a triangle with vertices 0, 1, a. It is a right triangle. Now consider the
triangle with vertices 0, a, a2. As n approaches infinity, we can see that this is
also a right triangle.

(A 0 − x − x triangle is considered right, despite being degenerate: We see
it follows the pythagorean theorem).

Now the angle between a2, a is the same as the angle between a, 1, as the

ratio a2

a equals the ratio a
1 . We conclude that the triangle 0, a, a2 is similar to the

original triangle. They are all pretty much 1− 0− 1 degenerate right triangles.
However... n never quite reaches infinity obviously. Thus, these triangles are
*almost* degenerate, but not quite.
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The degenerate side of the triangle actually has length x
n . Thus, the number

an (which we already showed was on the unit circle), must be the point that we
reach when we travel n · xn = x distance counterclockwise.

This point is clearly the same as cosx + i sinx, so we have proven Euler’s
Identity.

It is quite obvious that this proof is sketchy: However, I would rather include
a sketchy, but still intuitive proof than a short proof with calculus that may be
understandable, but not fully justified to the reader. The reader may find one
of these rigorous proofs if he or she wishes to.

Now, we will move on. Hopefully this satisfies the reader and gives the reader
some reasoning for why Euler’s Formula holds.

2.2 Formulas for Sin, Cos

Theorem: Given z = cosx+ i sinx, then
cosx = 0.5(z + 1

z ) and
sinx = −0.5i(z − 1

z )

Proof:
Notice 1

z = cosx− i sinx and z = cosx+ i sinx
Thus, adding up the two equations and subtracting them from each other

will yield
z + 1

z = 2 cosx, z − 1
z = 2i sinx and we obtain the desired expressions by

dividing by 2 and 2i respectively.

Example: As a reality check, make sure sin2 x+ cos2 x = 1

Solution:
Notice cos2 x+ sin2 x = 1

4 (z2 + 2 + 1
z2 )− 1

4 (z2 − 2 + 1
z2 ) = 1.

Example: Show that if A,B,C are the angles of a triangle and a, b, c are
the complex numbers corresponding to them (that is, a = cosA + i sinA, etc.)
then we have ab− 1

ab = c− 1
c .

Solution: Notice sinC = sin(180 − A − B) = sin(A + B) and that ab =
cos(A + B) + i sin(A + B) so putting it all together, we obtain 1

2i (c −
1
c ) =

1
2i (ab−

1
ab ) so the result follows.

We will see another proof of this soon. There will be no problems for this
section as we are still in the basics.
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3 Some Applications

Not in any particular arrangement, the following problems are just to gain
facility in usage of complex numbers.

We will first find expressions for two very interesting sums: Let z = cosx+

i sinx. Find a simple closed form for
cosx+ cos 2x+ ...+ cosnx
and sinx+ sin 2x+ ..+ sinnx.

Solution:

Notice that cosx, cos 2x, ... cosnx forms two geometric series.
That is,
cosx+ cos 2x+ ...+ cosnx = 0.5(z + 1

z + z2 + 1
z2 + ...+ zn + 1

zn ).

The reasoning is that cosnx+ i sinnx = (cosx+ i sinx)n, by DeMoivre.

Now we can sum the series z + z2 + .. + zn, 1z + 1
z2 + ... + 1

zn as they are
geometric.

Indeed, we may find it equals z(zn−1)
z−1 +

1
z (

1
zn−1)
1
z−1

.

This is nasty! We should try to simplify it. Indeed, it simplifies to become
(zn−1)(zn+1+1)

zn(z−1) .

We wish to convert all these za ± 1 terms into zb ± 1
zb

so we can use our
expressions for sinx, cosx so we should divide by zn+0.5. However, we should
not forget the original factor of 1

2 ! Putting all of these observations together,
we get that the series equals

0.5 ·
(z0.5(n+1)+ 1

z0.5(n+1)
)(z0.5n− 1

z0.5n
)

z0.5− 1
z0.5

which nicely equals
cos(

x(n+1)
2 ) sin( xn

2 )

sin( x
2 )

By a similar method, we find

sinx+ sin 2x+ ..+ sinnx =
sin nx

2 sin
x(n+1)

2

sin x
2

We may verify that
cosx+ ...+ cosnx+ i(sinx+ ...+ sinnx) = z + z2 + ...+ zn

to confirm our answer.
Example:
Find cos 20 cos 40 cos 80.

We present two solutions to this problem.
Solution 1:
Notice that if cos 20 cos 40 cos 80 = x, 8x sin 20 = 8 cos 20 sin 20 cos 40 cos 80

which in turn equals 4 sin 40 cos 40 cos 80 = 2 sin 80 cos 80 = sin 160.

We have obtained 8x sin 20 = sin 160 but as sin 160 = sin 20, we find x = 1
8

With complex numbers
Let z = cos 20 + i sin 20 so then we must find
1
8 (z + 1

z )(z2 + 1
z2 )(z4 + 1

z4 ).

Let this expression be x, so multiplying by z− 1
z , the expression ”telescopes”!

Using the identity (zx + 1
zx )(zx − 1

zx ) = z2x − 1
z2x we see that
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x(z − 1
z ) = 0.125(z8 − 1

z8 ) so then x sin 20 = 0.125 sin 160 and the result
follows.

Remarks: The two solutions are pretty much the same, however it is much
easier to see how the product ”telescopes” when you have expressions like x2 +
1
x2 , x + 1

x than with expressions like cos 40, cos 20 (at least, until you get good
enough intuition to see this instantly).

This should give you a good idea of how the concept is applied.
You cannot simply hope for plugging in these formulas and cancelling things..

Often, algebraic intution is needed.
Problems (solutions are in the back):

Problem 2.1: Solve the equation
cosx+ cos 2x+ cos 3x = sinx+ sin 2x+ sin 3x

Problem 2.2: Prove the identity sin 3x(2 cos−1) = sinx(2 cos 4x+ 1)

Problem 2.3: Suppose that cos a + cos b + cos c = sin a + sin b+ sin c = 0.
Then show that

3 cos(a+ b+ c) = cos 3a+ cos 3b+ cos 3c and also
3 sin(a+ b+ c) = sin 3a+ sin 3b+ sin 3c

4 Dealing with the Angles of a Triangle

Let A,B,C be the angles of a triangle with a = cosA+ i sinA and similarly for
b, c.

Fact:
Then abc = −1.

This should be obvious- abc = cos(A+B+C)+ i sin(A+B+C) = −1 using
the property (cosx+ i sinx)(cos y + i sin y) = cos(x+ y) + i sin(x+ y)

Problem from section 1: Suppose A,B,C are the angles of a triangle and
a, b, c are the complex numbers corresponding to them. Show that

ab− 1
ab = c− 1

c .
New Solution:
Multiply the fractions by 1 = −abc to obtain ab + c = c + ab which is

obviously true.
Note:
Notice that −1 = abc ⇐⇒ ab− 1

ab = c− 1
c

This is because if ab− 1
ab = c− 1

c then
a2b2c− c = abc2 − ab or (abc+ 1)(ab− c) = 0.

Famous Identity: Let A,B,C be the angles of a triangle. Show that
4 sinA sinB sinC = sin 2A+ sin 2B + sin 2C.

Solution:
Let a, b, c be the complex numbers corresponding to A,B,C. From this

point, I will use lowercase letters in this way without explanation, so keep that
in mind.

Then the problem is equivalent to showing
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(a− 1
a )(b− 1

b )(c− 1
c ) = −a2 + 1

a2 − b
2 + 1

b2 − c
2 + 1

c2 , or∑
cyc

a

bc
− bc

a
=
∑
cyc

1

a2
− a2

Now noticing a
bc = −a2,− bca = 1

a2 by abc = −1 yields the result.

In reality, A,B,C don’t have to be angles of a triangle for this to hold. All
that is required is A+B + C = 180.

This is somewhat unrelated, but by the same method we have if
A+B + C = 360, then 4 sinA sinB sinC = − sin 2A− sin 2B − sin 2C.
(Instead of abc = −1, abc = 1).
.
Furthermore, 4 cosA cosB cosC = −1 − cos 2A − cos 2B − cos 2C, a coun-

terpart to the identity we proved. (The proof is quite similar)
We move on.
Famous Question: Let A,B,C be the angles of a triangle. If

cos 3A+ cos 3B + cos 3C = 1, determine the largest angle of the triagle.

This fact also appears in 2014 AIME number 12.
The problem is quite astonishing- how do we determine an angle using just

one equation involving all 3 angles? It’s quite ridiculous. Regardless.. let’s bash
it!

Solution:
The condition becomes a3 + b3 + c3 + 1

a3 + 1
b3 + 1

c3 = 2 or
a3 + b3 + c3 − b3c3 − c3a3 − a3b3 = 2. Now add −2 = a3b3c3 − 1 to both sides
and then the left side factors!

It becomes (a3− 1)(b3− 1)(c3− 1) = 0, implying one of a, b, c is a third root
of unity! We conclude the largest angle of the triangle must be 120.

Problem 4.1: Given sin2A + sin2B + sin2 C = 2 in a triangle, determine
the largest angle of a triangle. (This one is very similar and also quite elegant!)

Until this point, we haven’t covered tangent much, if at all. Thus, it is fair
to prove a famous identity requiring tangent.

Identity: If4ABC is acute, show that tan a tan b tanc = tan a+tan b+tan c.
Proof:
Obviously tanA = a2−1

i(a2+1) . Then it remains to show

(a2 − 1)(b2 − 1)(c2 − 1) =
∑
cyc

(−(a2 − 1)(b2 + 1)(c2 + 1)) or equivalently,∑
cyc

−a2b2 + b2c2 − a2c2 + b2 + c2 − a2 = −a2b2 − b2c2 − c2a2 + a2 + b2 + c2

Now notice that if we split the LHS into
∑
cyc

−a2b2 + b2c2 − a2c2 and∑
cyc

b2 + c2 − a2 that these two sums equal −a2b2 − b2c2 − c2a2 and a2 + b2 + c2

respectively.

(This is because in
∑
cyc

b2 + c2− a2 each term is added twice and subtracted

once, and similarly for the other sum)
Thus, the identity has been proved. So many other identities in a triangle

are similarly destroyed.
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Problem 4.2: If ABC is a triangle, show that
∑
cyc

tan
A

2
tan

B

2
= 1

Problem 4.3: If ABC is a triangle, show that
cotA cotB + cotB cotC + cotC cotA = 1.

Problem 4.4: Let x = sin A
2 and define y, z similarly. Show that

x2 + y2 + z2 + 2xyz = 1.

5 Triangles: More Strategies (handling R,r, etc.)

Quite a few trigonometric identities involve a, b, c, [ABC], r, or R. (These are
the most common things that get involved.) How do we deal with these?

Denote the degree of a term as follows: if similar triangles with scale factor
k make the term increase by kn, then n is the degree. For example, sinx always
has degree 0, [ABC] has degree 2, and a, b, c, r, R have degree 1 each.

Most identities will be homogeneous- that is, all terms have the same degree.
If an identity wasn’t homogeneous, it would probably not be very general.

Anyway, by far the easiest way to deal with a, b, c is to write them in terms
of 2R sinA, 2R sinB, 2R sinC. Given an identity, this is what you want to do
first.

Let’s try an example.

Example: Prove in triangle ABC, a2 sin 2B + b2 sin 2A = 4[ABC]. (Notice
all terms are degree 2).

Step 1: Rewrite as 2R2 sin2A sin 2B + 2R2 sin2B sin 2A = 2[ABC].

Now we need to deal with [ABC]- recall 2[ABC] = R2(sin 2A + sin 2B +
sin 2C). This is not hard to see- simply draw ABC with circumcenter O, draw
OA, OB, OC, and add up the areas of the three small triangles.

Thus it becomes showing 2 sin2A sin 2B+2 sin2B sin 2A = sin 2A+sin 2B+
sin 2C. Now our conventional method apply- complex numbers and expansion
immediately turns it into

−a2b2 + b2 + a2 + 1
a2b2 −

1
a2 =

∑
cyc

a2 − 1

a2

which is true by rewriting 1
a2b2 as c2 and −a2b2 as − 1

c2 .

So how did the intuition for this occur? Well, here is a tip:
Convert everything in terms of trigonometric functions and R
when possible.
You generally convert a = 2R sinA first as this requires no thinking. The

next step is trickier:
Rewrite [ABC] as either 0.5R2(sin 2A+sin 2B+sin 2C) or 2R2 sinA sinB sinC.

This doesn’t seem like a big deal, but it can make a massive difference in the
amount of bashing you do after converting to complex numbers.

What about r, you might ask? There are also two ways to go about doing
this.

The first way is to notice r = (s − a) tan A
2 . Now rewrite s − a = b+c−a

2 =
R sinB +R sinC −R sinA.
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The other way is to use r = [ABC]
s and now we have already covered how to

deal with [ABC], s.
Let’s see these methods at work in more problems.

Example: Prove that
∑
cyc

a3 cos(B − C) = 3abc

Solution:
Noting a = 2R sinA, etc. and dividing 8R3 seems like a good step. We

obtain∑
cyc

sin3A cos(B − C) = 3 sinA sinB sinC. Now applying complex numbers

and noting cos(B − C) = 0.5( bc + c
b ) gives us some nice stuff:∑

cyc

(a3 − 3a+
3

a
− 1

a3
)(
b

c
+
c

b
) = 6

∑
cyc

c

ab
− ab

c
.

Now notice (a3−3a+ 3
a−

1
a3 )( bc+ c

b ) = a3b
c + a3c

b −
3ab
c −

3ac
b + 3b

ac+ 3c
ab−

b
a3c−

c
a3b .

For some cancellations, notice∑
cyc

−3ab

c
− 3ac

b
+

3b

ac
+

3c

ab
= 6

∑
cyc

−ab
c

+
c

ab
.

Then it remains to show∑
cyc

a3b

c
+
a3c

b
− b

a3c
− c

a3b
= 0

which becomes
∑
cyc

−a4b2 − a4c2 + b4c2 + b2c4 = 0 which is obvious.

This problem was, admittedly, bashy, which is why algebraic intuition is

needed. Sometimes, it is helpful to switch between
∑
cyc

a4b2 +a2b4 and notation

like (4, 2, 0) because both have their advantages.
However, I will not use (4, 2, 0) notation here.
Example: Show that r = 4R sin A

2 sin B
2 sin C

2 . This is useful for taking r
out of problems where it is annoying.

Solution:
Rewrite r = (s− a) tan A

2 and then rewrite a, b, c in s− a using R and Law

of Sines. Then the identity becomes (sinB+ sinC− sinA) = 4 cos A2 sin B
2 sin C

2

after rewriting tan A
2 .

Applying complex numbers and expanding, we need to show

b− 1
b+c− 1

c−a+ 1
a = −i(

√
abc+ 1√

abc
−
√

ab
c −
√

ac
b +
√

bc
a −
√

c
ab−

√
b
ac+

√
a
bc ).

And clearly
√
abc + 1√

abc
= i − i = 0. Furthermore, write all the terms of

the form
√

ab
c as

√
− 1
c2 = i

c and the same for terms in the form
√

c
ab and then

it becomes showing
b− 1

b + c− 1
c − a+ 1

a = b− 1
b + c− 1

c − a+ 1
a which is clearly true.

Problem 5.1: Show that 2R sinA sinB sinC = r(sinA+ sinB + sinC).

Problem 5.2: Show that a cosA+ b cosB + c cosC = abc
2R2

Problem 5.3: Show that s = 4R cos A2 cos B2 cos C2
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6 Conclusion and Remarks

Remarks
First, it is important to note that complex numbers have some serious
flaws when it comes to bashing trig.
There is one particular area where this flaw is apparent: inequalities.
Basic inequalities like sin A

2 sin B
2 sin C

2 ≤ 0.125 are incredibly hard to engi-
neer with complex numbers, because you cannot apply inequalities with complex
numbers (unless of course it is the triangle inequality). Thus, we would have to
simplify the LHS into a real expression first, and THEN show it is less than one
eighth.

Now, several things must be re-stressed over and over.
Firstly, the complex numbers method typically requires algebraic intuition.

From the problems we have shown solutions to, this is not as apparent, but for
certain problems in the problem section coming up, bashing and chugging sim-
ply won’t work. A simple tweaking of complex numbers can drastically increase
or decrease the amount of bash you need to do, and drastically change the ele-
gance of your solution. Furthermore, one must be very neat in their expansions.
All problems thus far have generally been symmetric or cyclic in A,B,C but as
you will see, this is not always the case.

Secondly, it is important to recognize trigonometric identities hidden inside

complex numbers. When you see a massive chunk like 0.25
∏

(a2 + b2c2 − 2),

what do you think of first?

After experience, you’ll instantly see it equals 0, 25
∏

(a2 +
1

a2
−2) which, if

you notice the perfect square that is hidden, becomes (4 sinA sinB sinC)2 (or
perhaps the form (sin 2A+ sin 2B + sin 2C)2 is more useful? who knows?)

Lastly, not everything should be bashed. Oops, we said this already.
After this, you will find a list of identities/formulas with their appropriate

proofs. Then, there will be some review/challenge problems. Finally, there is a
solutions manual with all the solutions to all the problems, whether they were
in the sections or the problems list.

I would like to thank AkshajK for advising me many many times in cre-
ating this, whether it was deleting/adding things to the table of contents (which
is not included in here) or other random stuff. Also, I took some problems
from ”53 Trigonometry Problems” compiled by Amir Hossein and from ”103
Trigonometry Problems”.You may look in there for further problems, but many
have already been used in creating this.
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7 Problems

Enjoy the problems! They are arranged in no particular order. This is so that
you try every single problem instead of skipping ones that are easy/hard.

7.1 Regular Problems

.
1. Prove that tan π

7 tan 2π
7 tan 3π

7 =
√

7

2. Suppose x, y, z, p satisfy p(cos(x+ y + z)) = cosx+ cos y + cos z and
similarly for sin. Prove that cos(x+ y) + cos(y + z) + cos(z + x) = p

3. Prove tan π
13 + 4 sin 4π

13 = tan 3π
13 + 4 sin 3π

13

4. Evaluate sin θ + 0.5 sin 2θ + 0.25 sin 3θ + ...

5. Let a, b be angles of a scalene triangle. Show that the conditions
a+ b = 90, (cos2 a+ cos2 b)(1 + tan a tan b) = 2 are equivalent.

6. In a triangle ABC, show that cosA+cosB+cosC = 1+4 sin A
2 sin B

2 sin C
2

7. a) For x not a multiple of 30, show that tan 3x
tan x = tan(60− x) tan(60 + x)

....b) Show that tan(x−72) tan(x−36) tanx tan(x+36) tan(x+72) = tan 5x.

8. Prove in triangle ABC, a−ba+b = tan A−B
2 sin C

2

9. Prove a triangle ABC is isosceles iFF a cosB + b cosC + c cosA = a+b+c
2

7.2 Olympiad Problems

.
10. (IMO 1962) Solve the equation in (0, 2π) of cos2 x+cos2 2x+cos2 3x = 1

11. (IMO 1966) Prove that for every natural number n, and for every real
number x 6= kπ

2t (t = 0, 1, . . . , n; k any integer)

1

sin 2x
+

1

sin 4x
+ · · ·+ 1

sin 2nx
= cotx− cot 2nx

12. (IMO 1996) Show that if in triangle ABC,
a+ b = tan C

2 (a tanA+ b tanB), then triangle ABC is isosceles.

13. (ISL) Prove that for all integers n the following is true:
2n
∏n
k=1 sin kπ

2n+1 =
√

2n+ 1

14. (ISL) Given real a and integer m > 0, and P (x) = x2m−2|a|mxm cos θ+
a2m, factorize P (x) as a product of m real quadratic polynomials

15. (1985 Iran) Let α be an angle such that cosα = p
q , where p and q are

two integers. Prove that the number qn cosnα is an integer.

16. (ISL) Show that a triangle whose angles A, B, C satisfy the equality

sin2A+ sin2B + sin2 C

cos2A+ cos2B + cos2 C
= 2

is a rectangular triangle.

17. (1980 USAMO) Let Fr = xr sin rA+yr sin rB+zr sin rC, where x, y, z, A,B,C
are real and A+B +C is an integral multiple of π. Prove that if F1 = F2 = 0,
then Fr = 0 for all positive integral r.
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18. (1996 USAMO) Prove that the average of the numbers n sinn◦ (n =
2, 4, 6, . . . , 180) is cot 1◦

That should be plenty for one to practice on.If you want more practice, as
we have already stated, many problems were taken out of 103 Trigonometry
Problems and 53 Trigonometry Problems, so those may not be good sources.
ISL and USAMO lists will not be good sources either, because I have used many
of their trigonometry problems that are not inequalities in here.

8 Buffer Zone

This entire almost-blank page is being used to separate the problems and the
solutions, so that you do not accidentally scroll down and see the solutions.
The next page will contain solutions to problems from previous sections, not
the problem section.
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9 Solutions to Problems from Previous Sections

.
Solution 2.1: Rewriting in terms of complex numbers and expanding yields

(defining a = cisx) that
a6(1− i)+a5(1− i)+a4(1− i)−x2(1+ i)−x(1+ i)− (1+ i) = 0 or obviously

(a2 + a+ 1)(a4(1− i)− (1 + i)) = 0 and then it is apparent that
(a2+a+1)(a4−i) = 0. Then obviously a = 120+360k, 240+360k, 22.5+90k.

Solution 2.2: Using a = cosx+ i sinx yields
(a3 − 1

a3 )(a2 + 1
a2 − 1) = (a− 1

a )(a4 + 1
a4 + 1). Let us not expand. Rather,

multiply both sides by a+ 1
a . It is evident that the LHS becomes

(a3 − 1
a3 )(a3 + 1

a3 ) = x6 − 1
x6 .

The RHS is obviously (x2 − 1
x2 )(x4 + 1

x4 + 1) which is just the difference of
cubes factorization in disguise. Truly, it becomes x6 − 1

x6

Solution 2.3: We easily obtain a+b+c+ 1
a+ 1

b + 1
c = a+b+c− 1

a−
1
b−

1
c = 0.

Thus, a+ b+ c = 1
a + 1

b + 1
c = 0.

Then we conclude a3 + b3 + c3 = 3abc, 1
a3 + 1

b3 + 1
c3 = 3

abc .
And by subtracting the two equations together and adding them together,

we obtain the desired result(s).

Solution 3.1: Substitute w = cos π
2n+1 + i sin π

2n+1 .

Then clearly w2n+1 = −1, w4n+2 = 1.
Now notice 22m(cos2m kπ

2n+1 ) = (wk + 1
wk )2m.

By binomial expansion, this becomes w2k +
(
2m
1

)
w2k−4 + ...+ 1

w2k .

Now if we expand each of these (wk + 1
wk )2m terms and group everything by

its binomial coefficient, something interesting happens.
First, notice the constant terms all equal

(
2m
m

)
and there are n of them,

yielding n
(
2m
m

)
.

Now notice we have many geometric series of the form(
2m
k

)
(wn(2m−2k) + w(n−1)(2m−2k) + ...+ 1

wn(2m−2k) ).
However, notice that none of them have a constant term! Thus, we add a

constant term equal to the binomial coefficient into each geometric series.
Of course, a total of

(
2m
0

)
+
(
2m
1

)
+ ...+

(
2m
m−1

)
is added to ”complete” each

geometric series, and thus this quantity must be subtracted from n
(
2m
m

)
.

Now notice each geometric series of the form
wn(2m−2k) + w(n−1)(2m−2k) + ... + 1

wn(2m−2k) is equal to 0! This is from
applying the geometric series formula.

We conclude, after a long expansion process, that
∑

cos2m
kπ

2n+ 1
is equal

to 1
22m (n

(
2m
m

)
−
(

2m
m−1

)
− ...−

(
2m
0

)
).

(Remember that we got rid of the 22m term a long time ago. Also, the last
expression may be simplified.)

Solution 3.2: This one is quite easy, so we shall not go into detail. Define
w = cis6 and then w15 = i, w30 = −1, w60 = 1. Now make everything in terms
fo w, and expand.

You should get 2z
z2+1 −

2iz
z4−1 + 2iz4

z8−1 + 2iz8

z16−1 = 0.

Notice the denominators are factors of z16 − 1. Thus, multiply the equation
by this factor and it should reduce to a trivial expression (with the help of
z15 = i).
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Solution 3.3:
We don’t like the square root, so let’s prove the equivalent

sin π
2n sin 2π

2n ..... sin
(2n−1)π

2n = n
22n−2

(I multiplied each sinx term by sin(180−x) which is equal to it. Also, there
is a 1 = sin nπ

2n term inside. )
Now, we define w = cis π2n so that wn = i, w2n = −1, w4n = 1.
Then we express everything in w: Grouping all the 2i terms together, the

LHS is equivalent to
1

(2i)2n−1 (w − 1
w )(w2 − 1

w2 )..(w2n−1 − 1
w2n−1 ) which in turn equals

1
(2i)2n−1wn(2n−1) (1− 1

w2 )(1− 1
w4 )...(1− 1

w4n−2 ).

Remembering that wn = i, we see that the 1
(2i)2n−1wn(2n−1) is equal to 1

(2)2n−1 .

Now we multiply both sides by 2n−1 and the problem becomes showing
(1− 1

w2 )(1− 1
w4 )...(1− 1

w4n−2 ) = 2n. Rewrite this as
(1− w4n−2)(1− w4n−4)...(1− w2).
Now we prove the following: If P (x) = x2m−2 + x2m−4 + ...+ 1, then P (x)

can be factored as (x2 − w2)(x2 − w4)(x2 − w6)..(x2 − w2m−2) where w is a
primitive 2mth root of unity.

This is quite obvious, because when x2 is equal to w2, w4, ...w2m−2 both

sides are 0. (This is because P (x) is equal to x2m−1
x2−1 .)

Returning to the problem, we set x2 = 1,m = 2n, then we see that
(1 − w4n−2)(1 − w4n−4)..(1 − w2) = 14n−2 + 14n−4 + ... + 10 = 2n. Thus,

since all steps are reversible, we are done.
Solution 3.4: This one is not hard. Define w = cisπ8 . Evidently w4 =

i, w8 = −1, w16 = 1.
Then expanding trivializes the problem. We proceed as in solution 3.1 by

”completing the geometric series” for each binomial coefficient.
Solution 4.1: Expanding everything, we obtain a2 + b2 + c2 + a2b2 + b2c2 +

c2a2 = −2.
Now add 2 = a2b2c2+1 to both sides, and it becomes (a2+1)(b2+1)(c2+1) =

0 so one of a, b, c is equal to i and one of the angles equals 90 degrees.
Solution 4.2: Notice tan A

2 = a−1
i(a+1) .

Then
∑
cyc

tan
A

2
tan

B

2
=
∑
cyc

− (a− 1)(b− 1)

(a+ 1)(b+ 1)
.

Then we need to show
∑
cyc

−(a− 1)(b− 1)(c+ 1) = (a+ 1)(b+ 1)(c+ 1) or∑
cyc

−abc− ab+ ac+ a+ bc− c+ b− 1 = ab+ bc+ ca+ a+ b+ c.

Now notice in the LHS, each ab term appears twice as positive and once as
negative. The same is true of each a term. The −abc and −1 terms just cancel
each other out. Then it is evident that both sides are equal.

Solution 4.3: This one is also trivial by expansion. We need to show∑
cyc

−(a2 + 1)(b2 + 1)(c2 − 1) = (a2 − 1)(b2 − 1)(c2 − 1) and then we expand

both sides and compare the coefficients of each term.
Solution 4.4: After expansion it becomes∑
cyc

i(a+
1

a
− 2)−

√
bc

a
−
√
a

bc
= −6i

13



Now rewrite bc
a = − 1

a2 and then
√

bc
a = i

a and same for all the others.

Meanwhile,
√

a
bc = a

i .

Then lots of things cancel, leaving us with
∑
cyc

−2i = −6i.

Solution 5.1: We already showed that r = 4R sin A
2 sin B

2 sin C
2 .

Substitute that in, and we get sinA sinB sinC = 2 sin A
2 sin B

2 sin C
2 (sinA+

sinB + sinC).
Now rewrite on the LHS sinA = 2 sin A

2 cos A2 . Then we cancel out all the
sines to obtain

4 cos A2 cos B2 cos C2 = sinA+ sinB + sinC
And it is not hard to see that this is true by expansion. (Once again, we use√
bc
a = i

a ,
√

a
bc = a

i .)

Solution 5.2: This is not really a complex number proof, but we use an
identity that we proved earlier with complex numbers.

Recall that 4 sinA sinB sinC = sin 2A+ sin 2B+ sin 2C. (refer to section 4)
In the problem, once you substitute a = 2R sinA, b = 2R sinB, c = 2R sinC

and cancel out all the Rs,
it boils down to 4 sinA sinB sinC = sin 2A+ sin 2B + sin 2C which is true.
Solution 5.3: Substitute s = R(sinA + sinB + sinC). Then we need to

prove
sinA+ sinB + sinC = 4 cos A2 cos B2 cos C2 .
Applying complex numbers and expanding, we need to show that∑
cyc

a− 1

a
= i(
√
abc+

1√
abc

+
∑
cyc

(

√
ab

c
+

√
c

ab
)).

The RHS is equal to
∑
cyc

−1

a
+ a because

√
abc+ 1√

abc
= 0.

We now present solutions to problems from the problems section on the next
page.

14



10 Solutions to Problems

10.1 Regular Problem Solutions

Solution 1a: We prove the equivalent tan π
7 tan 2π

7 ... tan 6π
7 = −7.

Let w be a primitive 14th root of unity, then we need to prove
(w2−1)(w4−1)...(w12−1)
(w2+1)(w4+1)..(w12+1) = 7

Lemma: Let w be a 4k − 2th root of unity. The polynomial P (x) = (x2 −
w2)(x2−w4)..(x2−w4k−2) is equivalent to the polynomial x4k−4+x4k−6+...+1.

The proof of this fact is simple. In fact, we already proved it earlier in a
solution to a different problem (3.2).

Now we apply the lemma, noting (w2−1)(w4−1)..(w12−1)
(w2+1)(w4+1)...(w12+1) is equal to P (1)

P (i)

(where k = 4) and this is easily evaluated as 7
1 .

Solution 1b: The proof is evident by using our lemma for a general k.

Solution 2: We obtain pxyz + p
xyz = x+ y + z + 1

x + 1
y + 1

z

Also, pxyz − p
xyz = x+ y + z − 1

x −
1
y −

1
z and thus

pxyz = x+ y + z, p
xyz = 1

x + 1
y + 1

z , p = xy + yz + zx.

We need to show xy + yz + zx+ 1
xy + 1

yz + 1
zx = 2p which is now obvious.

Solution 3: This is quite forward by setting w = cis π13 and expanding.
Solution 4: Define z = cisθ and split it into two geometric series:
z
2i (1 + z

2 + z2

4 + ...)− 1
2zi (1 + 1

2z + ...) and evaluate them to be 2z2−2
i(−2z2+5z−2)

and now divide by z to obtain
2(z− 1

z )

−2i(z+ 1
z )+5i

and this is equal to 4 sin θ
5−4 cos θ .

Solution 5: Clearly if a+ b = 90, the relation is satisfied. Thus, assume the
relation is satisfied, and we will prove a+ b = 90.

With complex numbers it becomes
(a2 + b2 + 4 + 1

a2 + 1
b2 )(a2 + b2) = 4(a2 + 1)(b2 + 1)

or a4 + 1 + b4 + 1 + a2

b2 + b2

a2 = 2a2b2 + 4. If we are clever with grouping, we
may see

(a4 + b4) + a4+b4

a2b2 − 2a2b2 − 2 = 0 or
(a4 + b4)(1 + 1

a2b2 )− 2a2b2(1 + 1
a2b2 ) = 0 and then obviously

(a2 − b2)2(1 + 1
a2b2 ) = 0 so either

a2 = b2, ab = i. Since a,b are both less than 180 in angle measure, a2 =
b2 =⇒ a = b

But we are given that the triangle is scalene, so a = b is impossible and we
know ab = i, so A+B = 90

Solution 6: Immediately apply complex numbers to obtain

a+ b+ c+ 1
a + 1

b + 1
c = 2− i

∏
cyc

(
√
a− 1√

a
).

This must be the third or fourth time you’ve encountered (
√
a − 1√

a
) and

the equivalence of the LHS, RHS should be obvious.
Solution 7a: define w = cis60 and we need to show
x6−1
x6+1 = (x

2−1
x2+1 )(x

2−w4

x2+w4 )(x
2−w2

x2+w2 ).

Now it should be obvious that (x2 − 1)(x2 − w2)(x2 − w4) = x6 − 1, (x2 +
1)(x2 + w2)(x2 + w4) = x6 + 1 and so we are done.
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Solution 7b: We proceed as in the previous problem except we define w =
cis36. Everything else follows the same steps.

It should be noted that 7a, 7b can easily be generalized.
Solution 8: It is equivalent to
(a− 1

a − b+ 1
b )(a+ b) = −(a− 1

a + b− 1
b )(a− b)( c−1c+1 )

Notice we can pull an a− b factor out of a− b− 1
a + 1

b and an a+ b factor
out of a+ b− 1

a −
1
b .

Then we are left with (1 + 1
ab )(c + 1) = −(c − 1)(1 − 1

ab ) which, employing
abc = −1, is trivial.

Solution 9 Let us prove that if it is isosceles, the condition holds. WLOG
A = B. Then we may notice c = 2a cosA and the relation becomes trivial. It
reduces to cos 2A = 2 cos2A− 1.

The reverse direction is tougher. Expansion yields∑
cyc

(ab− b

a
+
a

b
− 1

ab
) =

∑
cyc

a− 1

a
.

Noting ab = − 1
c ,

1
ab = −c, we are left with∑

cyc

a

b
− b

a
= 0.

Clearing denominators yields a2c+ b2a+ c2b− b2c− c2a− a2b = 0. Now, if
you see a clever factorization, everything is over. Adding abc− abc = 0 to both
sides, we may now factor it easily as

(b−a)(c− b)(c−a) = 0 and then it is apparent that the triangle is isosceles.

10.2 Solutions to Olympiad Problems

Solution 10: Denote w = cisx and then it follows that
w2 + 1

w2 + w4 + 1
w4 + w6 + 1

w6 = −2.
Substitute z = w2 + 1

w2 to obtain
z + z2 − 2 + z3 − 3z = −2 or z3 + z2 − 2z = 0 implying z = 0,−2, 1.
First we handle z = −2 as it is easy. It implies (w2−1)2 = 0, w = ±1. Then

x = 180
Now we handle z = 0. It implies w4 + 1 = 0, w = cis45, 135, 225, 315 (and

those are the values of x).
Finally, consider z = 1 or w4 − w2 + 1 = 0, implying w2 = cis60, 300.
This means that w = cis30, 150, 210, 330.
We conclude x = 30, 45, 135, 150, 180, 210, 225, 315, 330

Solution 11: This one does not need complex numbers, as induction trivi-
alizes it, but we may attempt complex numbers regardless.

With w = cisx we obtain
x2

x4−1 + x4

x8−1 + ..+ x2n

x2n+1−1
= 1

x2−1 −
1

x2n+1−1
.

But it telescopes! Notice x2n

x2n+1−1
+ 1

x2n+1−1
is equal to 1

x2n−1 and this

process keeps on going until we are left with
1

x2−1 = 1
x2−1 . Thus the identity is proven.

Solution 12: This is probably the ugliest problem you will see in this article.
However, it should teach you not to fear messes and that with courage, one can
bash almost anything.

Standard notation and substituting a = 2R sinA, b = 2R sinB yields
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−a+ 1
a − b+ 1

b = c−1
c+1 ( (a2−1)2

a3+a + (b2−1)2
b3+b )

Now we get rid of c and simplify a little:

(ab− 1)(a+ b) = ab+1
ab−1 ( b(a

2−1)2
a2+1 + a(b2−1)2

b2+1 )

Here goes to expansion:

(ab− 1)(a+ b)(ab− 1)(a2 + 1)(b2 + 1) = (ab+ 1)(b(b2 + 1)(a2− 1)2 + a(a2 +
1)(b2 − 1)2)

Let’s expand the right side first, but keep the ab+ 1 term as it is.∑
b3a4 + ba4 − 2a2b3 − 2a2b+ b3 + b

where the summation goes through a, b.
We may factor out of the sum an a+ b term to obtain
(a+ b)(a3b3 + a3b+ ab3 − 3a2b2 − 3ab+ a2 + b2 + 1)

Now dividing out an a+ b term from both sides, it is finally time to expand.
(a2b2 − 2ab + 1)(a2b2 + a2 + b2 + 1) = (ab + 1)(a3b3 + a3b + ab3 − 3a2b2 −

3ab+ a2 + b2 + 1)
Because the expansion is in two variables, it is not difficult to compute.
In reality, we are only computing 12 + 16 = 28 products, not too bad.
Neat and flawless expansion yields −4a3b+8a2b2−4ab3 = 0 or −4ab(a−b)2 =

0.
As a, b are representations of angles of a triangle, a = b so the triangle is

isosceles.
Problem 13:
Denote w = cis π

2n+1 so that w2n+1 = −1, w4n+2 = 1.

Then we wish to show in
√

2n+ 1 = (w − 1
w )(w2 − 1

w2 )..(wn − 1
wn ).

This is equivalent to
(−1)n(2n+ 1) = (w − 1

w )2(w2 − 1
w2 )2...(wn − 1

wn )2.
Or we can express this as
(−1)n(2n+ 1) = (w − 1

w )..(wn − 1
wn )(wn+1 − 1

wn+1 )..(w2n − 1
w2n ).

This is because wn − 1
wn = wn+1 − 1

wn+1 and so on.
At this point you should know how to proceed. First, we multiply both sides

by a bunch of ws to obtain
(−1)n(2n+ 1)wn(2n+1) = (w2 − 1)(w4 − 1)...(w4n − 1).
Notice the LHS equals 2n+ 1.
Furthermore, you should be familiar with the right hand side:
(w2 − x)(w4 − x)..(w4n − x) = x2n + x2n−1 + ... + 1. (This is the third or

fourth encounter of this useful fact).
Plugging in x = 1, we obtain 2n+ 1 = 2n+ 1, so the problem is solved.
Solution 14: This doesn’t really need the techniques we have learned, but

it is quite a nice problem regardless.
Setting x2m − 2|a|mxm cos θ+ a2m = 0 and viewing it as a quadratic in xm,

we obtain that
xm = |a|m(cos θ ± i sin θ) by the quadratic formula.
Then say w = cos θ

m + i sin θ
m , z = cis 2π

m , so that
x = |a|w, |a|wz, |a|wz2, ..|a|wzm−1 or
x = |a|w, |a|wz, ...|a|wzm−1.

Thus, we may group the factors of the form (x−|a|wzk), (x−|a|wzk) together
and obtain factors of the form (x2 − 2|a| cos θ+2kπ

m + a2).
Solution 15: We proceed with strong induction on n. The cases n = 1, n =

2 are trivial.
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Let a be the complex number corresponding to α. Then a+ 1
a = 2p

q .

We wish to show qn

2 (an + 1
an ) is an integer.

Define Tn = qn

2 (an + 1
an ).

Then Tn = 2Tn−1T1 − q2Tn−2, and we have proven that T1, T2, ..Tn−1 are
integers. Immediately, we see Tn is an integer.

Complex numbers helped us see very quickly that Tn = 2Tn−1T1 − q2Tn−2,
which, if we had stayed with cos, would have been tough to see.

Solution 16:
It is not hard to see sin2A+ sin2B+ sin2 C = 2(cos2A+ cos2B+ cos2 C) or
sin2A+ sin2B + sin2 C = 2 which is equivalent to
a2 + b2 + c2 + a2b2 + b2c2 + c2a2 = −2 implying
a2b2c2 + a2b2 + b2c2 + c2a2 + a2 + b2 + c2 + 1 = 0 or
(a2 + 1)(b2 + 1)(c2 + 1) = 0 implying one of a, b, c is i, so it has a measure

of 90 degrees.
Solution 17:
Substitute d = xcisA, e = ycisB, f = zcisC.
Notice that since A+B + C is a multiple of π, def = ±xyz.
Now suppose we define gn = dn + en + fn.
If we show that gn is real for integers n, then gn’s imaginary part, which is

Fr will be zero. We may attempt to show this now.
We have shown def = ±xyz which is real.
We are given F1 = 0, implying that d+ e+ f is real.
Finally, 0.5(g21 − g2) = de+ ef + fd is real.
Thus, there exists a cubic x3 +a2x

2 +a1x+a0 with all real coefficients with
roots d, e, f . (The whole purpose of showing the symmetric sums of d, e, f were
real was to use Vieta’s Formulas to construct a cubic).

Therefore, if we plug in d, e, f into this cubic we get
d3 + a2d

2 + a1d+ a0 = 0.
Multiplying gives dn+3 + a2d

n+2 + a1d
n+1 + a0d

n = 0.
Adding up the other equations, we obtain
gn+3 + a2gn+2 + a1gn+1 + a0gn = 0.
Given the equation g3 + a2g2 + a1g1 + a0 we conclude g3 is real. Then by

induction on n, it follows that all gn are real.
Solution 18: First notice n sinn+ (180− n) sin(180− n) = 180 sinn.
Thus, we want the value of 2(sin 2 + sin 4 + .. + sin 88) + sin 90. (I divided

by 90 because it asked about the average).
We need to show given w = cis2 that
−i(w + w2 + ..+ w44 − 1

w −
1
w2 − ..− 1

w44 ) + 1 = i(w+1
w−1 ).

This is equivalent to
w + w2 + ..+ w44 + w46 + w47 + ...+ w89 + i = −w+1

w−1 .

Since i = w45, we may obtain that
w(w89 − 1) = −(w + 1) which is true using w90 = −1.
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