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Problem 1, exercise 10.5

Part a

Consider the following slightly different algorithm for estimating |S|:

For every element which appears in multiple sets Si, Sj, ..., keep one copy of that element the

same and label each of the other copies of that element differently. Now we have produced dis-

joint sets S
′
1, S

′
2, .... Call their union S

′
. Note that S ⊂ S

′
, and note that |S ′ | = |S ′

1|+|S
′
2|+...

since the sets are disjoint, so since we know |S ′|, we can use Monte Carlo sampling as de-

scribed in the lecture slides. This obtains a bound of:

N > 3
ρε2
log(2

δ
).

Now I claim that this bound also applies in our situation. To see that, note that in the

algorithm above, we are sampling an item xj uniformly and only increasing our count by one

if it’s in a particular one of c(xj) sets. So in the Monte Carlo algorithm above, we increase

the count by 1 with probability 1
c(xj)

.

In our algorithm, we increase the count by 1
c(xj)

with probability 1, which is just a lower

variance way of approximating the same quantity! In other words, the algorithm given in

the homework is strictly noisier than the algorithm given above, so the algorithm above

would require more samples than our algorithm. Therefore the above bound also holds for

our algorithm, meaning to get an (ε, δ)-approximation, we require:

N > 3
ρε2
log(2

δ
).

Part b

We can count solutions to a DNF formula the same way we counted members of S in part

a. For each clause in our DNF, set all of its variables to True and then let Si be the set of

all truth assignments for the rest of the variables in our DNF. Then we are interested in the

size of the union of each Si, call that S. Note that we have access to the same tools as in

part a. We know the size of each Si, since it is just 2Vi , where Vi is the number of variables

in every clause other than the ith one. And we know c(xi), the number of sets Si in which a

clause appears. To find this, we can just see how many of the clauses that xi satisfies, and

this will necessarily be the number of sets Sj such that xi ∈ Sj.
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So we can use our algorithm from part a. In other words, we sample a truth assignment t

times uniformly from all of our Sis, and then estimate |S| by:

(1
t

∑t
j=1

1
c(xi)

)(
∑m

i=1 |Si|.

The bound in part a can tell us how large t should be if we want to use this algorithm to

get an (ε, δ)-approximation of |S|.

Problem 2, exercise 10.8

Define N(x) to be {2} if x = 1 and {x±1} otherwise. Define a Markov chain by the following

transition probabilities from state x to y:

Px,y =



min(1,x
2

y2
)

2
y ∈ N(x)

1−
∑

z∈N(x)

min(1,x
2

z2
)

2
) y = x

0 otherwise

Because the maximum number of neighbors of any state is 2, setting M = 2 and πx = 1
Si2

(where S is as described in the problem) lets us apply Lemma 10.8 in the book. So as

long as the Markov chain defined by the transition probability stated above is aperiodic and

irreducible, then it must have stationary state distribution πx = 1
Si2

. A Markov chain is

aperiodic if there exists some state which can transition to itself. 1 is one such state, since

P1,2 = min(1, 12

22
) = 1/4, so P1,1 = 1 − 1/4 = 3/4 > 0. Therefore, this Markov chain is

aperiodic. A Markov chain is irreducible if there exists a path with nonzero probability from

every state i to every state j. Well such a path definitely exists, since this Markov chain just

does a one-step walk along the positive integers, so we can always move up or down by 1,

meaning to get from i to j, if i > j, we can take the path i, i + 1, ...j. If i < j, we can take

the path i, i− 1, ...j, and if i = j we can take the path i, i + 1, i = j. So this Markov chain

is aperiodic and irreducible, meaning by Lemma 10.8, it has stationary distribution:

πx = 1
Si2

.

Problem 3, exercise 10.10

Here we can use the same procedure as in problem 2. Given a graph G, let our state space

Ω be the set of all colorings of the vertices of G. Now for all x ∈ Ω, define N(x) to be the

set of all colorings which differ from x by exactly vertex. Note that N(x) = ∆, so we can
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pick M = ∆ + 1 when using Lemma 10.8. Let I(x) be the number of improper edges in x. If

we want to construct a Markov chain with stationary distribution πxαλ
I(x), we can do it as

follows:

Let 1/Z be the normalizing constant such that
∑

x λ
I(x) = Z. Then Lemma 10.8 tells us that

if the distribution given below is aperiodic and irreducible, it has stationary distribution

πx = λI(x)/Z.

Px,y =



min(1,λ
I(y)

λI(x)
)

∆+1
y ∈ N(x)

1−
∑

z∈N(x)

min(1,λ
I(y)

λI(x)
)

∆+1
y = x

0 otherwise

This Markov chain is aperiodic because we picked M = ∆ + 1 > ∆, so every coloring x

has some probability of staying the same. This Markov chain is also irreducible since we

can obviously get from every coloring to every other coloring just by changing the color of

one vertex at a time. Therefore, Lemma 10.8 tells us that the above Markov chain has the

desired stationary distribution.

Note: our normalization constant Z canceled out in the application of Lemma 10.8, so

our answer doesn’t depend on it. Which is good, because it would be incredibly hard (some

might even call it NP-hard) to calculate.
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