1 Radon Transform of a Gaussian

Calculate the Radon transform of $p(\xi, \phi)$ of $f(x, y)=e^{-x^{2}-y^{2}}$. (Hint: there is symmetry you can exploit to simplify this problem).

2 Radon Transform of Shifted Function

Show that if the Radon transform of $f(x, y)$ is $p(\xi, \phi)$, then the Radon transform of $f\left(x-x_{0}, y-y_{0}\right)$ is $p\left(\xi-x_{0} \cos \phi-y_{0} \sin \phi\right)$. Also give a graphical explanation of this result. [Hint: this is somewhat easier to prove if you use the delta function form of the Radon transform given in the book: $\left.p(\xi, \phi)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \phi+y \sin \phi-\xi) d x d y.\right]$

3 Radon transform consistency conditions

Let $p(\xi, \phi)$ be a parallel-beam sinogram and $P_{\phi}(\nu)$ be its 1D Fourier transform with respect to ξ for fixed ϕ, as defined in the lecture. Show that

$$
P_{\phi+\pi}(\nu)=P_{\phi}(-\nu)
$$

4 Problem 6.12 from Prince book

Consider an object comprising two small metal pellets located at $(x, y)=(2,0)$ and $(2,2)$ and a pice of wire stretched straight between $(0,-2)$ and $(0,0)$.
(a) Sketch this object. Assume N photons are fired at each lateral position ℓ in a parallel-ray configuration. For simplicity, assumes that each metal object stops $1 / 2$ the photons that are incident upon it no matter what angle it is hit.
(b) Sketch the number of photons you would expect to see as a function of ℓ for $\theta=0^{\circ}$ and $\theta=90^{\circ}$.
(c) Draw the projections you would see at $\theta=0^{\circ}$ and $\theta=90^{\circ}$.
(d) Sketh the backprojection image you would get at $\theta=0^{\circ}$ (without filtering).

