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Abstract

This paper documents a numerical model, developed for the McGill
Rocket Team based on classical chemical thermodynamics coupled with
the Trebble-Bishnoi equation of state, to solve for the oxidizer tank
conditions (pressure, temperature, mole flowrate and liquid/vapour
equilibrium) during the operation of a hybrid rocket. This model is
modular and can be coupled to fluid mechanics and combustion cham-
ber models for a more detailed analysis of a hybrid rocket engine.

1 Introduction

A hybrid rocket engine is a type of rocket engine that uses a liquid or gaseous
oxidizer with a solid fuel. One of the McGill Rocket Team’s goals, for the
2017-2018 IREC competition, is to build a hybrid rocket. Such an endeav-
our will also require mathematical modelling along with empirical testing
to optimize performance. The development of a mathematical model of a
hybrid rocket engine requires, among other things, a model of the oxidizer
tank. These values are crucial for estimating the engine burn time, the oxi-
dizer mass required and the combustion chamber inlet conditions.

The objective of this paper is to describe a numerical model of the oxi-
dizer tank during operation that is robust, accurate, modular, and easy to
maintain in MATLAB. Although similar models have previously been de-
veloped [2, 1, 7], they generally have a few issues, such as being specific to a
single kind of oxidizer, not allowing for the modelling of additional pressur-
ants such as helium, not using gas models that are as accurate as desired,
or not being modular enough to be able to couple to models of other parts
of the hybrid engine. This model should be documented in sufficient detail
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here such that future members should be able to understand its working
from consulting this document and easily make changes to the MATLAB
code or the model. This model is particularly useful for modelling nitrous
oxide (N2O) given the typical launch conditions at IREC but can be used
with other oxidizers as well, depending on the operating temperature of the
rocket.

2 Some Basic Theory

The thermodynamic properties and equilibrium states of all chemical sys-
tems (i.e. gases and liquids) can be determined using equations that relate
the state variables of the system: pressure, temperature, specific volume and
composition (if dealing with chemical mixtures). Such equations are called
equations of state. The simplest equation of state is known as the ideal
gas law:

PV̂ = RT (1)

Where the hat on the V denotes specific volume, or volume per mole
of substance. From the equation of state, it then becomes possible to cal-
culate other thermodynamic properties from state functions, such as the
internal energy U , enthalpy H, Gibbs free energy G and entropy S. For liq-
uid/vapour mixtures, the ideal gas law is often paired with Raoult’s law,
which states that the partial pressure of a gas is proportional to its vapour
pressure and its mole fraction:

Pi = P ∗
i xi (2)

Where Pi denotes the partial pressure of component i in the mixture,
and P ∗

i and xi are the vapour pressure and mole fraction, respectively.

The ideal gas law is very simple and easy to use, but at elevated pressures,
at lower temperatures or with chemical mixtures, substantial inaccuracies
begin to appear. The solution is to add a corrective term Z, which is called
the compressibility factor.

PV̂ = ZRT (3)

Many equations of state (but not all) are focused on finding values for Z
given the chemical properties of the system. In a similar fashion, pressure
alone becomes inadequate for describing vapour/liquid equilibria, and is
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replaced by a term f(T, P, x, Z) that more accurately reflects the chemical
dynamics of the system, called fugacity.

fi = f∗i xi (4)

Fugacity and pressure are related with the dimensionless fugacity coeffi-
cient.

φ =
f

P
(5)

What chemical properties are used in equations of state? The most im-
portant one is the substance’s critical point. This is the point where the
liquid and vapour phases of the chemical species become indistinguishable,
i.e. the heat of vaporization becomes 0. Above their critical point, chemi-
cals behave like gases — regardless of pressure. It turns out that different
chemicals behave similarly depending on how ”close” to criticality they are.
As the critical point can be easily experimentally determined, that makes
it a good way to predict the properties of various liquids and gases under a
variety of conditions. The temperature, vapor pressure, specific volume and
compressibility factor at the critical point are called the critical temperature
Tc, critical pressure Pc, critical volume Vc and critical compressibility Zc,
respectively.

Another frequently used parameter is the acentric factor ω, which ac-
counts for the non-sphericity of molecules. This is also easily experimentally
determined, and for many chemicals, the acentric factor has been tabulated.

One note on nomenclature: This document uses the terms ”gas” and
”vapour”, but they are generally not interchangeable. ”Gas” refers to
the entirety of the gaseous phase while ”vapour” refers exclusively to the
oxidizer that is in the gas phase. If the tank contents consist solely of pure
oxidizer, then vapour and gas may be used interchangeably.

3 Liquid Phase Model

Our objective is to determine the following variables at any given point in
time:

1. T , the temperature of the oxidizer. The tank is assumed to be in
thermal equilibrium, so there is no temperature gradient throughout
the process.
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2. P , the tank pressure.

3. nl, the number of moles of liquid oxidizer.

4. ng, the number of moles of gaseous oxidizer.

The model begins by first making a few assumptions:

• The tank walls are adiabatic (i.e. no heat loss during operation).

• The liquid is pure oxidizer, while the gas can be a mixture of oxidizer
and pressurant (this assumption can be removed in the future, with
some relatively minor changes).

• The liquid/vapour system reach equilibrium instantaneously.

This leaves us with 4 key constraints:

1. Conservation of energy

2. Conservation of mass

3. Fixed volume

4. Equilibrium constraint

Applying these constraints leaves us with a system of ordinary differential
equations, which can be solved simultaneously in order to find the temper-
ature, pressure, moles of gas and moles of liquid at every point in time.
The differential equations resulting from each constraint are shown in the
following sections.

3.1 Conservation of Energy

Assuming the tank is adiabatic, the only source of energy loss is the enthalpy
of the molecules leaving the tank through the outlet. As the tank volume
does not change, we consider only the internal energy of its contents:

d

dt
(ntÛt) = −ṅĤl (6)

ntUt = ntankUtank + ngUg + nlUl (7)

It is possible to split the internal energy and enthalpy into two values: the
ideal value and the excess value, which is simply defined as the difference
between the ideal value and the real value.

H = H∗ +Hexcess (8)
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Figure 1: A sketch of the oxidizer tank during operation. The liquid oxidizer
is on the bottom, and as the pressure drops, some of the oxidizer will vaporize
to repressurize the tank.
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The fundamental relation between internal energy U and enthalpy H is:

U = H − PV = H − ZRT (9)

By taking the derivative with respect to time, combining with equations 8
and 9 and separating the partial derivatives, we obtain:

X
dT

dt
+W

dP

dt
+ Y

dnl
dt

+ Γ
dng
dt

= 0 (10)

These terms can be further split into the liquid and vapour derivatives:

X = LT + VT (11)

W = LP + VP (12)

Y = Ln − Ĥl,excess (13)

Γ = Vn + ∆Ĥv − Ĥl,excess (14)

LT is given by:

LT = nl

[
Ĉ∗
p,l +

∂Ĥl,excess

∂Zl

∂Zl
∂T

+
∂Ĥl,excess

∂T
−R

(
Zl + T

∂Zl
∂T

)]
(15)

All of the values in this equation can be calculated. The specific heat Ĉ∗
p,l

can be determined using tabulated correlations for a variety of substances,
while the derivatives can be determined using any kind of slope finding
algorithm, such as Richardson extrapolation. The remaining liquid and
vapour derivatives are listed in the appendix.

3.2 Conservation of Mass

The only location where mass is flowing out of(and hopefully not into) the
tank is at the outlet. The change in the number of moles leaving the tank
is therefore a function of the pressure difference between the combustion
chamber and the tank, as well as possibly the specific volume, density, and
specific heat ratios. This function will be denoted as K.

dng
dt

+
dnl
dt

= −K(∆P ) (16)
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3.3 Fixed Volume

The volume of the tank is constant. This is an additional constraint, because
as the liquid empties, the empty space must be filled out by the gas, leading
to a drop in pressure and an equilibrium shift.

V = ngV̂g + nlV̂l (17)

Replacing the V terms with the expression ZRT
P , we obtain:

P =
RT

V
(ngZg + nlZl) (18)

Taking the time derivative of this expression, we obtain the following:

η
dT

dt
+ γ

dP

dt
+ Zl

dnl
dt

+ δ
dnv
dt

= 0 (19)

Where

η = ng
∂Zg
∂T

+ nl
∂Zl
∂T

+
1

T
(Zgng + Zlnl) (20)

γ = ng
∂Zg
∂P

+ nl
∂Zl
∂P
− V

RT
(21)

δ = (1− y)
∂Zg
∂y

+ Zg (22)

3.4 Equilibrium Constraint

At chemical equilibrium, the fugacity coefficients must be equal:

φl = yφv (23)

Since the system is at equilibrium at the beginning of the process, and is
assumed to stay at equilibrium, these values must stay the same throughout,
i.e. the difference betyween the liquid and vapour fugacities remains 0 over
time. Knowing that y =

ng
nv

, and taking the derivative with respect to time,
we obtain:

d

dt
(ngφl − nvφv) = 0 (24)

By expanding the partial derivatives and converting to the standard form
of the differential equation, we have:

Θ
dT

dt
+ Λ

dP

dt
+ Ψ

dng
dt

= 0 (25)
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Where

Θ = ng

(
∂φl
∂Zl

∂Zl
∂T

+
∂φl
∂T

)
− nv

(
∂φv
∂Zv

∂Zv
∂T

+
∂φv
∂T

)
(26)

Λ = ng

(
∂φl
∂Zl

∂Zl
∂P

+
∂φl
∂P

)
− nv

(
∂φv
∂Zv

∂Zv
∂P

+
∂φv
∂P

)
(27)

Ψ = ψl − φv − y(1− y)

(
∂φv
∂Zv

∂Zv
∂y

+
∂φv
∂y

)
(28)

3.5 Solution Matrix

Combining the four derived differential equations, we obtain the system of
equations needed to solve for T, P, nl and ng:


W X Y Γ
0 0 1 1
η γ Zl δ
Θ Λ 0 Ψ



dT
dt

dP
dt

dnl
dt

dnv
dt

 =


0
−K

0
0

 (29)

4 Pure Gas Phase Model

Once the liquid has been completely emptied, or if the nitrous begins at
above the critical temperature, then the gas will empty from the tank. Be-
cause the system is no longer in a liquid/vapour equilibrium, the physics are
significantly simpler. Some additional assumptions will be made here:

• The oxidizer and pressurant, if any, are homogeneously mixed.

• The flow can be modeled as isentropic, i.e. no energy loss.

• The same equations governing the flow of the liquid can be applied
to the flow of the gas.

With these assumptions in mind, the next step is to set up the equations.
We first note the equation governing flow:

dng
dt

=
1

M

dm

dt
= −K(∆P ) (30)

Where M and m denote the average molar weight and the total mass of the
tank, respectively. For isentropic expansion, the temperature, pressure, and
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density of an ideal gas can be described with the following relations:

T2

T1
=
(P2

P1

) γ−1
γ

=
(ρ2

ρ1

)γ−1
(31)

Where ρ and γ denote the density and the heat capacity ratio of the gas,
respectively. The subscripts 1 and 2 can be used to denote the state of
the gas at two different points in time. Obviously, the gas is unlikely to be
behaving ideally, and so the compressibility factors must be included. First,
for a real gas, the pressure can be related to the density, temperature and
compressibility with the following equation:

P =
1

M
ZρRT (32)

Noting that ρ = m/V , it is possible to obtain the following with some basic
algebra and canceling out V,R and M , all constants:

P2

P1
=
T2/(Z1m1)

T1/(Z2m2)
(33)

Substituting back into (31) and simplifying,

T2

T1
=
(Z1m1

Z2m2

)γ−1
=
(P2

P1

) γ−1
γ

=
(ρ2

ρ1

)γ−1
(34)

This means that it is possible to relate the change in mass, known from the
flow equation (30), to the pressure, temperature and density simultaneously
(Remember that m2 = m1 + ∆m

∆t )!

The only remaining question is how to calculate Z, as it is dependent on
P . The easiest way is to use iteration, by first guessing the value of Z. This
will allow us to calculate P and T based on (34). We use these values to
recalculate Z in (32). If the resulting value is higher than our guess, then Z
is incremented slightly. If it is lower, then Z is decremented. This process
is repeated until convergence is achieved.

The initial guess can be provided by the Trebble-Bishnoi equation of
state, which will give the compressibility, pressure, oxidizer amount, and
temperature at the beginning of the process (it could also be used to calcu-
late the emptying process, but using a simple iteration loop is much more
computationally efficient).
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5 The Trebble-Bishnoi Equation of State

The Trebble-Bishnoi equation of state (TB-EOS) is a 4-parameter cubic
equation of state of the form

P =
RT

V − b
− a(T )

V 2 + (b+ c)V − (bc− d2)
(35)

where a, b, c and d are parameters that depend on the chemical properties
of the system [4, 3]. In cubic form, the TB-EOS can be written as:

0 = Z3 + (C − 1)Z2 + (A− 2BC −B − C −B2 −D2)Z

+ [B2C +BC −AB +D2(B + 1)] (36)

where:

A =
aP

R2T 2
(37)

B =
bP

RT
(38)

C =
cP

RT
(39)

D =
dP

RT
(40)

The largest and smallest solutions to this polynomial give the compressibility
of the gas and liquid phases respectively, while the middle root is discarded.

5.1 Determining the Parameters

The first parameter, a, is a function of T and is obtained by first calculating
its value at the critical point, ac:

ac = 0.45724
R2T 2

c

Pc
(41)

Afterwards, for a given temperature, a is given by:

a(T, ω) = ac · α(Tr, q1) (42)

α = exp[q1(1− Tr)] (43)

Tr = T/Tc (44)
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q1 =


0.66208 + 4.63961ω + 7.45183ω2 for ω < −0.10

−0.31913 for ω < 0.35 and Tr ≤ 1.0

0.35 + 0.7924ω + 0.1875ω2 − 28.93(0.3− Zc)2 for − 0.10 ≤ ω ≤ 0.40

0.32 + 0.9424ω − 28.93(0.3− Zc)2 for ω > 0.40

The value of b is determined in a similar manner:

bc = 0.07780
RTc
Pc

(45)

b = bc · β(Tr, ω) (46)

β =

{
1.0 + q2(1− Tr + lnTr) for Tr ≤ 1.0

1.0 for Tr > 1.0

q2 =


0 for ω < −0.0423

0.05246 + 1.15058ω − 1.99348ω2

+1.59490ω3 − 1.39267ω4 for − 0.0423 ≤ ω ≤ 0.30

0.17959 + 0.23471ω for ω > 0.30

c is found using the following relations:

Cc − 1 = −3ζc (47)

ζc = 1.075Zc (48)

Cc =
cPc
RTc

(49)

Finally, the value of d is obtained from a table, or in certain cases calculated
from a generalized correlation:

d = 0.341Vc − 0.005 (50)

Where Vc is in units of m3/kmol.
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5.2 Extension to Mixtures

When applied to fluid mixtures, the TB-EOS must include some additional
terms to account for the interactions between different mixture components
[5]. There are now 3 different types of parameters: ai, the parameter for
the pure substance i in the mixture, aij, the value of a that accounts for
the interaction between component i and component j, and am, the value
of a for the overall mixture. ai and aj are calculated as done normally with
a pure substance. Afterwards, the interaction parameters are defined as:

aij = (aiaj)
1/2(1−Kaij ) (51)

bij =
bi + bj

2
(1−Kbij ) (52)

cij =
ci + cj

2
(1−Kcij ) (53)

dij =
di + dj

2
(1−Kdij ) (54)

Where K denotes an interaction constant between components for that spe-
cific parameter. Generally, K can be considered to be equal to 0, unless
specified otherwise. The mixture parameters are:

am =
i=n∑
i=1

j=n∑
j=1

xixjaij (55)

bm =
i=n∑
i=1

j=n∑
j=1

xixjbij (56)

cm =
i=n∑
i=1

j=n∑
j=1

xixjcij (57)

dm =

i=n∑
i=1

j=n∑
j=1

xixjdij (58)

Once the mixture parameters are determined, calculation of the TB-EOS
proceeds as usual, except using the mixture parameters rather than the
pure parameters for the calculations.
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5.3 Enthalpy and Fugacity

Once the state variables of the system are known for a given instant, we can
then calculate the enthalpy H and fugacity f . These are essential for the
energy balance and chemical equilibrium equations. For the TB-EOS, we
begin by calculating the values of three variables: τ , θ and λ [6]:

τ = 1 +
6c

b
+
c2

b2
+

4d2

b2
(59)

The values of the two other variables depend on the sign of τ . If τ is
positive:

θ =
√
τ (60)

u = 1 +
c

b
(61)

λ = ln
∣∣∣2Z +B(u− θ)
2Z +B(u+ θ)

∣∣∣ (62)

If τ is negative:

θ =
√
−τ (63)

λ = −2 arctan

(
2Z + uB

Bθ
− π

)
(64)

Afterwards, the enthalpy is:

H −H∗ = Hexcess = RT (Z − 1) +
λ

bθ
(a− ∂a

∂T
)

+
∂b

∂T

(
−RT
V − b

+
a

b2τ

[
V (2c+ b)− bc+ c2 − 2d2

δ
+

(3c+ b)λ

bθ

])
(65)

where:

δ = V 2 + (b+ c)V − (bc+ d2) (66)

The fugacity is:

ln | f
P
| = Z − 1− ln |Z −B|+ A

Bθ
λ (67)

For mixtures, the enthalpy equation is identical, except the mixture param-
eters, denoted with the subscript m, are used instead of the pure substance
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values. The fugacity equation is slightly more complex, although quite sim-
ilar:

ln | fi
xjP
| = bd

bm
(Z − 1)− ln |Z −Bm|

+
Amλ

Bmθ

[
(ad/n)

am
− bd
bm
− nθd

θ

]
− Am
Bmθ

[
ZBmnθd + 0.5B2

m(unθd − θnud)
Z2 + (Bm + Cm)Z − (BmCm +D2

m)

]
(68)

Where

nθd =
−1

2θb2m

[
6bmcd − 6bdcm + 2cmcd + 8dmdd −

bd
bm

(2c2
m + 8d2

m)
]

(69)

nud =
cd
bm
− bdcm

b2m
(70)

ad =
∂

∂ni
(amn

2)− 2

j=n∑
j=1

njaij (71)

bd =
∂

∂ni
(bmn) = 2

j=n∑
j=1

xjbij − bm (72)

cd =
∂

∂ni
(cmn) = 2

j=n∑
j=1

xjcij − cm (73)

dd =
∂

∂ni
(dmn) = 2

j=n∑
j=1

xjdij − dm (74)

For more information on how these equations are obtained, consult the ap-
pendix.

6 Initial Conditions

How are the initial conditions for the differential equations determined? At
the beginning of the burn, it is presumed that we know the temperature
of the tank (easily measured) and the mass of oxidizer/pressurant loaded
into the tank, but not the pressure nor what portion of the oxidizer has
evaporated. Therefore, the TB-EOS is used to determine the pressure and
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the relative amounts of liquid and gaseous oxidizer, in a separate MATLAB
script.

6.1 Constraints and Objective Functions

The relevant constraints to consider are conservation of mass, fixed volume,
and chemical equilibrium. Since the tank can exchange heat with its sur-
roundings conservation of energy is not applicable here.

noxidizer = nv + nl (75)

ng = nv + npressurant (76)

φl = yφv (77)

V = ngV̂g + nlV̂l (78)

As we know the total mass of oxidizer in the tank, knowing nv also give
us nl from (75). This leaves two unknowns: P and nv. We can therefore
define two objective functions by rearranging (77) and (78):

F1(P, nv) = (nv + npressurant)φl − nvφv (79)

F2(P, nv) = (nv + npressurant)Zg + (noxidizer − nv)Zl −
PV

RT
(80)

The system is at equilibrium when both F1 and F2 are equal to 0.

6.2 Solution Method

To find the initial conditions, an initial guess is generated using Raoult’s
law:

nv =
ynpressurant

1− y
(81)

P =
P ∗
oxidizer(T )

y
(82)

The pure vapor pressure P ∗ can be found for various substances using
tabulated correlations.

Next, the compressibility factors Zl(T, P ), Zg(T, P, y) and fugacity co-
efficients φl, φv are calculated using the TB-EOS. F1 and F2 can then be
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evaluated. To converge towards 0, Newton-Raphson’s method for nonlinear
systems is applied: (

nv
P

)
k+1

=

(
nv
P

)
k

− J−1

[
F1

F2

]
k

(83)

Where J is the Jacobian of the objective function vector. The error is then
calculated:

||δk+1|| =
√(

nv
∣∣
k+1
− nv

∣∣
k

)2
+
(
P
∣∣
k+1
− P

∣∣
k

)2
(84)

||F|| =
√

F2
1 + F2

2 (85)

norm = max(||δk+1||, ||F||) (86)

We set an arbitrary tolerance tol, which is the maximum acceptable er-
ror. If norm < tol, the solution has converged. If norm > tol, we recalculate
y based on the new value of nv:

y|k+1 =
nv|k+1

nv|k+1 + npressurant
(87)

We recalculate the compressibility factors Zg and Zl and repeat the steps
until convergence is achieved.

7 Structure of Program

The overall structure of the MATLAB program is as follows:

1. Input physical parameters, temperature, mass of oxidizer/pressurant.

2. Run initial conditions script.

3. Check if oxidizer is supercritical. If so, skip the liquid script and run
the gas script.

4. Calculate all parameters in TB-EOS.

5. Calculate all required derivatives either analytically or using Richard-
son extrapolation.

6. Solve next step of Runge-Kutta algorithm.

7. Iterate 3-5 until the liquid is emptied.

8. Switch to gaseous model until gas is empty.
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Figure 2: Overall structure of model.
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Figure 3: Structure of initial condition script.
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Figure 4: Structure of liquid flow model.
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Figure 5: Structure of gas flow model.
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Figure 6: Structure of Trebble-Bishnoi equation of state solution.
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A Appendix

A.1 List of symbols

To be added later.

A.2 Energy Balance Equations

LT = nl

[
Ĉ∗
p,l +

∂Ĥl,excess

∂Zl

∂Zl
∂T

+
∂Ĥl,excess

∂T
−R

(
Zl + T

∂Zl
∂T

)]
(88)

VT =

m∑
i=1

ngiĈgi +ng

[
∂Ĥg,excess

∂Zg

∂Zg
∂T

+
∂Ĥg,excess

∂T
−R

(
Zg +T

∂Zg
∂T

)]
(89)

LP = nl

[
∂Ĥl,excess

∂Zl

∂Zl
∂P

+
∂Ĥl,excess

∂P
−RT ∂Zl

∂P

]
(90)

VP = ng

[
∂Ĥg,excess

∂Zg

∂Zg
∂P

+
∂Ĥg,excess

∂P
−RT ∂Zg

∂P

]
(91)
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Ln = Ĥl,excess − ZlRT (92)

Vn = Ĥg,excess−ZgRT+(1−y)

[
∂Ĥg,excess

∂Zg

∂Zg
∂y

+
∂Ĥg,excess

∂y
−RT ∂Zg

∂y

]
(93)

X = LT + VT

W = LP + VP

Y = Ln − Ĥl,excess

Γ = Vn + ∆Ĥv − Ĥl,excess

X
dT

dt
+W

dP

dt
+ Y

dnl
dt

+ Γ
dng
dt

= 0

A.3 Derivation of Enthalpy and Fugacity

To be added later.
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