Discrete math, 1 grade

abraham chmutin

September 2019

1 Set theory

Definition 1.1.

set is set if and only if for every element we can say if it is in set or not. $\in -in$

1.1 Elementary properties

1.1.1 Russell's paradox

Definition 1.2.

set A is good
$$\iff A \notin A$$
.
 $G = \{A \mid A \text{ is good}\}$
 $G \in G$?

We can work with one big set, but what if we need more?

1.1.2 Axiom of power set

Definition 1.3.

 $\begin{array}{l} \forall - \textit{ for all} \\ \exists - \textit{ exists} \\ \exists ! - \textit{ exists and only one} \\ A \ \subset \ Biff \forall x \in A \, (x \in B) - A \textit{ is subset of } B \\ |X| = \# X = \textit{ number of elements in finite set} \end{array}$

Definition 1.4. $\mathcal{P}(A) = 2^{A} = \mathcal{B}(A) = \{X \mid X \subset A\}$

Why do we write 2^A ? Well, $|2^A| = 2^{|A|}$, so it's justified. **Axiom 1.** $\exists set \ A \Rightarrow \exists set \ 2^A$

1.1.3 Existence of product

Definition 1.5. $A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Why do we write $A \times B$? Well, $|A \times B| = |A| \times |B|$, so it's justified. $\exists sets A, B \Rightarrow \exists A \times B$

1.2 Functions

Function is a relation between sets that associates to every element of a first set exactly one element of the second set.

Definition 1.6. y = f(x) — here f is a function and y is an image of x.

Definition 1.7. If f is function from A to B then A is domain of f and B is codomain of f. $f: X \to Y$.

Definition 1.8. $\Gamma_f = \{(x, y) \in X \times Y \mid y = f(x)\}$ — graph of a function.

Definition 1.9.

if $f: X \to Y:$

 $\forall x_1, x_2 \in X : x_1 \neq x_2 (f(x_1) \neq f(x_2)) \iff f \text{ is an injection (one-to-one function)} \\ \forall y \in Y (\exists x \in X : f(x) = y) \iff f \text{ is a surjection (function onto)}$

f is an injection and a surjection $\iff f$ is bijection (one-to-one correspondence)

Definition 1.10. $Y^X = \{f \mid f : X \to Y\} = set of functions from X to Y$ Why do we write Y^X ? Well, $|Y^X| = |Y|^{|X|}$, so it's justified.

1.2.1 Composition

Definition 1.11. *if* $f: X \to Y$ and $g: Y \to Z$, then $g \circ f: X \to Z$ and $g \circ f(x) = g(f(x))$.

If $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Definition 1.12. *if* X *is a set, then* $Id_X = 1_X : X \to X, \forall x \in X (Id_x (x) = x)$ *— identity function.*

Definition 1.13. if $f: X \to Y$, $g: Y \to X$, $g \circ f = Id_X$, $f \circ g = Id_Y$, then g is called inverse function to f or anti-function to f. We write $g = f^{-1}$.

Theorem (1). For f exists inverse function \iff f is a bijection.

Proof. 1. Proof that bijection is invertible

If we have bijection $f: A \to B$ then $\forall b \in B \ (\exists ! a \in A : f(a) = b)$. Let g(b) be that a. Then $g = f^{-1}$.

2. Proof that invertible function is bijection.

(a) Proof that invertible function is injection.

Let's prove by contradiction. Let's say invertible function $f: A \to B$ isn't injection. That means $\exists a_1, a_2 \in A : a_1 \neq a_2 \land f(a_1) = f(a_2) =$ b. Then $f^{-1}(b)$ is not defined. Contradiction.

(b) Proof that invertible function is surjection. By yourself.

Theorem (2). $\forall \Omega \left(\exists \ bijection \ f : 2^{\Omega} \rightarrow \{0, 1\}^{\Omega} \right)$

Proof.

Definition 1.14.

$$\mathcal{X}_{A}(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

 \mathcal{X}_A is called indicator function or characteristic function. Lirical digression: $\mathcal{X}_{[0;+\infty)}$ is called Heaviside step function.

Definition 1.15. $N_{\varphi} = \{x \in \Omega \mid \varphi(x) \neq 0\}$ N_{φ} is called support of the function φ Obviously, $N_{\mathcal{X}_A} = A$ and $\mathcal{X}_{N_{\varphi}} = \varphi$. So \mathcal{X}_A is a bijection on the set $2^{\Omega} \forall \Omega$.

1.2.2 What is this about? Who knows? Definitely not me

Definition 1.16. Let $A, B \subset \Omega$. Then

1.
$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

2. $A \cap B = \{x \mid x \in A \land x \in B\}$
3. $A \setminus B = \{x \in A \mid x \notin B\}$
4. $\overline{A} = \Omega \setminus A$
Let's prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
Proof. 1. Proof $\overline{A \cup B} \subset \overline{A} \cap \overline{B}$
 $\forall x \in \overline{A \cup B} \left(x \notin A \cup B \Rightarrow x \notin A \land x \notin B \Rightarrow x \in \overline{A} \land x \in \overline{B} \Rightarrow x \in \overline{A} \cap \overline{B}\right)$
2. Proof $\overline{A} \cap \overline{B} \subset \overline{A \cup B}$

By yourself, dudes.

Let $A_1, \ldots, A_n \subset \Omega$. Let's choose random $x \in \Omega$ Let α_i be the answer on the question if $x \in A_i$. Then we have some function $f: \Omega \to \{0, 1\}^n$. So $\exists \Omega, A_1, \ldots, A_n$: f is a surjection.