Discrete math, 1 grade

abraham chmutin

September 2019

1 Set theory

Definition 1.1.

set is set if and only if for every element we can say if it is in set or not.
$\in-$ in

1.1 Elementary properties

1.1.1 Russell's paradox

Definition 1.2.

$$
\begin{aligned}
& \text { set } A \text { is good } \Longleftrightarrow A \notin A . \\
& G=\{A \mid A \text { is good }\} \\
& G \in G ?
\end{aligned}
$$

We can work with one big set, but what if we need more?

1.1.2 Axiom of power set

Definition 1.3.

$$
\begin{aligned}
& \forall-\text { for all } \\
& \exists-\text { exists } \\
& \exists!-\text { exists and only one } \\
& A \subset \text { Bif } f \forall x \in A(x \in B)-A \text { is subset of } B \\
& |X|=\# X=\text { number of elements in finite set }
\end{aligned}
$$

Definition 1.4. $\mathcal{P}(A)=2^{A}=\mathcal{B}(A)=\{X \mid X \subset A\}$
Why do we write 2^{A} ? Well, $\left|2^{A}\right|=2^{|A|}$, so it's justified.
Axiom 1. \exists set $\mathcal{A} \Rightarrow \exists \operatorname{set} 2^{\mathcal{A}}$

1.1.3 Existence of product

Definition 1.5. $A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$
Why do we write $A \times B$? Well, $|A \times B|=|A| \times|B|$, so it's justified.
\exists sets $A, B \Rightarrow \exists A \times B$

1.2 Functions

Function is a relation between sets that associates to every element of a first set exactly one element of the second set.

Definition 1.6. $y=f(x)$ - here f is a function and y is an image of x.
Definition 1.7. If f is function from A to B then A is domain of f and B is codomain of f. $f: X \rightarrow Y$.

Definition 1.8. $\Gamma_{f}=\{(x, y) \in X \times Y \mid y=f(x)\}$ - graph of a function.

Definition 1.9

if $f: X \rightarrow Y$:
$\forall x_{1}, x_{2} \in X: x_{1} \neq x_{2}\left(f\left(x_{1}\right) \neq f\left(x_{2}\right)\right) \Longleftrightarrow f$ is an injection (one-to-one function)
$\forall y \in Y(\exists x \in X: f(x)=y) \Longleftrightarrow f$ is a surjection (function onto)
f is an injection and a surjection $\Longleftrightarrow f$ is bijection (one-to-one correspondence)
Definition 1.10. $Y^{X}=\{f \mid f: X \rightarrow Y\}=$ set of functions from X to Y
Why do we write Y^{X} ? Well, $\left|Y^{X}\right|=|Y|^{|X|}$, so it's justified.

1.2.1 Composition

Definition 1.11. if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then $g \circ f: X \rightarrow Z$ and $g \circ f(x)=g(f(x))$.

If $f: X \rightarrow Y, g: Y \rightarrow Z, h: Z \rightarrow W$, then $h \circ(g \circ f)=(h \circ g) \circ f$.
Definition 1.12. if X is a set, then $I d_{X}=1_{X}: X \rightarrow X, \forall x \in X\left(I d_{x}(x)=x\right)$ - identity function.

Definition 1.13. if $f: X \rightarrow Y, g: Y \rightarrow X, g \circ f=I d_{X}, f \circ g=I d_{Y}$, then g is called inverse function to f or anti-function to f. We write $g=f^{-1}$.

Theorem (1). For f exists inverse function $\Longleftrightarrow \mathrm{f}$ is a bijection.
Proof. 1. Proof that bijection is invertible
If we have bijection $f: A \rightarrow B$ then $\forall b \in B(\exists!a \in A: f(a)=b)$. Let $g(b)$ be that a. Then $g=f^{-1}$.
2. Proof that invertible function is bijection.
(a) Proof that invertible function is injection.

Let's prove by contradiction. Let's say invertible function $f: A \rightarrow B$ isn't injection. That means $\exists a_{1}, a_{2} \in A: a_{1} \neq a_{2} \wedge f\left(a_{1}\right)=f\left(a_{2}\right)=$ b. Then $f^{-1}(b)$ is not defined. Contradiction.
(b) Proof that invertible function is surjection.

By yourself.

Theorem (2). $\forall \Omega\left(\exists\right.$ bijection $\left.f: 2^{\Omega} \rightarrow\{0,1\}^{\Omega}\right)$
Proof.

Definition 1.14.

$$
\mathcal{X}_{A}(x)=\left\{\begin{array}{l}
1, \text { if } x \in A \\
0, \text { if } x \notin A
\end{array}\right.
$$

\mathcal{X}_{A} is called indicator function or characteristic function.
Lirical digression: $\mathcal{X}_{[0 ;+\infty)}$ is called Heaviside step fuction.
Definition 1.15. $N_{\varphi}=\{x \in \Omega \mid \varphi(x) \neq 0\}$
N_{φ} is called support of the function φ
Obviously, $N_{\mathcal{X}_{A}}=A$ and $\mathcal{X}_{N_{\varphi}}=\varphi$. So \mathcal{X}_{A} is a bijection on the set $2^{\Omega} \forall \Omega$.

1.2.2 What is this about? Who knows? Definitely not me

Definition 1.16. Let $A, B \subset \Omega$. Then

1. $A \cup B=\{x \mid x \in A \vee x \in B\}$
2. $A \cap B=\{x \mid x \in A \wedge x \in B\}$
3. $A \backslash B=\{x \in A \mid x \notin B\}$
4. $\bar{A}=\Omega \backslash A$

Let's prove $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
Proof. 1. Proof $\overline{A \cup B} \subset \bar{A} \cap \bar{B}$

$$
\forall x \in \overline{A \cup B}(x \notin A \cup B \Rightarrow x \notin A \wedge x \notin B \Rightarrow x \in \bar{A} \wedge x \in \bar{B} \Rightarrow x \in \bar{A} \cap \bar{B})
$$

2. Proof $\bar{A} \cap \bar{B} \subset \overline{A \cup B}$

By yourself, dudes.

Let $A_{1}, \ldots, A_{n} \subset \Omega$. Let's choose random $x \in \Omega$ Let α_{i} be the answer on the question if $x \in A_{i}$. Then we have some function $f: \Omega \rightarrow\{0 ; 1\}^{n}$. So $\exists \Omega, A_{1}, \ldots, A_{n}$: f is a surjection.

