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Oh the Places You’ll Go

Much of machine learning can be boiled down to a function estimation task,
and in order to achieve this there are two types of methods adopted: para-
metric and non-parametric. Parametric methods are where the functional
dependence is defined through a fixed number of parameters. On the other
hand, non-parametric methods are where the number of parameters that
define the function vary with the size of the data set. In both cases the val-
ues of the parameters are unknown. These set of notes we will only focus
on parametric methods.

Whilst considering parametric methods, we will come across two ways
of estimating the unknown values of the parameters. The first set of meth-
ods will assume that the unknown parameters have specific “true” values
which can be obtained through deterministic steps. The second will take a
probabilistic approach, wherein the unknown parameters will be treated as
random variables. Thus probability distributions will be used to describe
the input and output variables, and thus removing the need to find specific
values for the unknown parameters.

As we take a detailed tour of the different approaches to parameter
estimation we will look singularly at linear functions. The fact that this
is not limiting our ability to generalize to non-linear models will become
apparent as we progress further through the material. Ultimately the idea
is to create a clear map of the vast landscape of parameter estimation which
can otherwise be so hard to comprehend as a student.
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Chapter 1

Basic Concepts

1.1 General Setup

• We will start by adopting a form, such as a linear quadtratic function,
with the goal of estimating the associated unknown coefficients so that
the function matches the spacial arrangement of the data as closely
as possible.

• Given a set of data points (yn,xn), yn ∈ R, xn ∈ Rl, n = 1, 2, ..., N,
and a parametric set of functions,

F := {fθ(·) : θ ∈ A ⊆ RK} (1.1)

find a function in F , which will be denoted as f(·) := fθ∗(·), such that
given a value of x ∈ Rl, f(x) best approximates the corresponding
value y ∈ R. The value θ∗ is the value that results from the estimation
procedure.

• The choice of F has to be based on as much a priori information as
possible concerning the physical mechanism that underlies the gen-
eration of the data. The most common approach is to iterate over
different families of functions and evaluate the performance of each
according to a chosen criterion.

• Having adopted a parametric family of functions, F , one has to get an
estimate for the unknown set of parameters. A non-negative loss func-
tion is usually adopted, which quantifies the deviation/error between
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CHAPTER 1. BASIC CONCEPTS 5

the measured value of y and the predicted one using the corresponding
measurements x, as in fθ(x).

L(·, ·) : R× R 7−→ [0,∞), (1.2)

and compute θ∗ so as to minimize the total loss,

f(·) := fθ∗(·) : θ∗ = arg min
θ∈A

J(θ) (1.3)

assuming that a minimum exists.

• There may be more than one optimal values θ∗, depending on the
shape of J(θ).

• A common combination used to introduce estimation techniques is
the linear class of functions with a least squares (LS) loss function,

L(y, fθ(x)) = (y − fθ(x))2, (1.4)

and there are good very good reasons for this.

1. Linearity with the LS loss function turns out to simplify the
algebra and hence allows one to understand the various ”secrets”
that underlie the area of parameter estimation.

2. Understanding linearity is very important. Treating nonlinear
tasks, most often, turns out to finally resort to a linear problem.

A good example of this is the transformation

R 3 x 7−→ φ(x) :=

[
x
x2

]
∈ R (1.5)

which is the same as

y = θ0 + θ1φ1(x) + θ2φ2(x) (1.6)

which is a linear model with respect to the components φk(x), k =
1, 2, of the two-dimension image, φ(x), of x. This simple trick
is at the heart of a number of nonlinear methods that will be
treated later on in these notes.
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1.2 Introduction to Linear Regression

• Regression involves the task of modeling the relationship of a depen-
dent random variable, y, which is considered to be the response of a
system to changes in independent variables, x1, x2, ..., xl.

• The independent variables will be represented as the components of
an equivalent random vector x.

• The relationship is modeled via an additive disturbance or noise term,
η.

y = θ0 + θ1x1 + ...+ θlxl + η = θTx+ η (1.7)

• The noise variable, η, is an unobserved random variable, and the goal
of the regression task is to estimate the parameter vector, θ, given a
set of data, (yn,xn) where n = 1, 2, ..., N . This is also known as the
training data set.

• We can state that the prediction model for a θ̂ determined using
training data set, is:

ŷ = θ̂
T
x (1.8)

where θ̂ can be set to θ∗ obtained from minimizing the LS loss function

J(θ) =
N∑
n=1

(yn − θTxn)2 (1.9)

• Taking the derivative with respect to θ and equating to the zero vector
0 results in (

N∑
n=1

xnx
T
n

)
θ̂ =

N∑
n=1

xnyn (1.10)

which is equivalent to
XTXθ̂ = XTy (1.11)

and the LS estimate is

θ̂ = (XTX)−1XTy (1.12)

assuming that (XTX)−1 exists.
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This solution is unique, provided that the XTX is invertible. The
uniqueness is due to the strictly convex parabolic shape the LS loss
function.

1.3 Biased versus Unbiased Estimation

• In supervised learning, we are given a set of training points, (yn,xn),
n = 1, 2, ..., N , and we return an estimate of the unknown paramter
vector, say θ̂.

• However, the training points are random variables (in the determin-
istic world), and thus if we are given another set of N observations
of the same random variables, these are going to be different, and
obviously the resulting estimate will also be different. In other words,
by changing our training data different estimates result.

• An estimate, such as θ̂, has a specific value, which is the result of a
function acting on a set of observations, on which our chosen estimate
depends. In general, we could generalize and write that

θ̂ = f(y, X). (1.13)

• Once we allow the set of observations to change randomly, and the
estimate becomes itself a random variable, we write the previous equa-
tion in terms of the corresponding random variables,

Θ̂ = f(y, X), (1.14)

and we refer to this functional dependence as the estimator of the
unknown vector θ.

• In order to simplify the analysis and focus on the insight behind the
methods, we will assume that our parameter space is that of real
numbers, R. We will also assume that the model (i.e., the set of
functions F), which we have adopted for modeling our data, is the
correct one and the value of the associated true parameter is equal to
θ0 (unknown to us).
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• Let Θ̂ denote the random variable of the associated estimator; then
the squared error loss function to quantify deviations, a reasonable
criterion to measure the performance of an estimate is the mean-
square error (MSE),

MSE = E
[(
θ̂ − θ0

)2]
(1.15)

where the mean E is taken over all possible training data sets of size
N. If the MSE is small, then we expect that, on average, the resulting
estimates will be close to the true value. Additionally, if we insert the
mean value E[θ̂] of θ̂ into (1.15) to get

MSE = E
[((

θ̂ − E[θ̂]
)

+
(
E[θ̂]− θ0

))2]
= E

[(
θ̂ − E[θ̂]

)2]
+
(
E[θ̂]− θ0

)2 (1.16)

where first term is V ariance around the mean value, and the second
term is Bias2: the deviation of the mean value of the estimator from
the true one.

• One may think that choosing an estimator that is unbiased, as is
E[θ̂] = θ0, such that the second term in (1.16) becomes zero, is a
reasonable choice. Assume that we have L different training sets, each
comprising N points. Let us denote each data set by Di, i = 1, 2, ..., L.
For each one, an estimate θ̂i, i = 1, 2, ..., L will result. Then, form the
new estimator by taking the average value,

θ̂(L) :=
1

L

L∑
i=1

θ̂i (1.17)

This is also an unbiased estimator, because

E[θ̂(L)] =
1

L

L∑
i=1

E[θ̂i] = θ0. (1.18)
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• Moreover, assuming that the involved estimators are mutually uncor-
related,

E
[
(θ̂i − θ0)(θ̂j − θ0)

]
= 0, (1.19)

and of the same variance, σ2, then the variance of the new estimator
is now much smaller.

σ2
θ̂(L) = E

[(
θ̂(L) − θ0

)2]
=
σ2

L
(1.20)

• Hence, by averaging a large number of such unbiased estimators, we
expect to get an estimate close to the true value. However, in practice,
data is not always abundant. As a matter of fact, very often the
opposite is true and one has to be very careful about how to exploit
it. In such cases, where one cannot afford to obtain and average a
large number of estimators, an unbiased estimator may not necessarily
be the best choice.

• Also going back to (1.16), there is no reason to suggest that by making
the second term equal to zero, the MSE becomes minimum.

• Instead of computing the MSE for a given estimator, let us replace
θ̂ with θ in (1.16) and compute an estimator that will minimize the
MSE with respect to θ, directly.

• In this case, focusing on unbiased estimators, E[θ] = θ0, introduces a
constraint to the task of minimizing the MSE, and it is well-known
that an unconstrained minimization problem always results in loss
function values that are less than or equal to any value generated by
a constrained counterpart,

min
θ
MSE(θ) ≤ min

θ:E[θ]=θ0
MSE(θ) (1.21)

where the dependence of MSE on the estimator θ in (1.21) is explicitly
denoted.

• Let us denote by θ̂MV U a solution of the task minθ:E[θ]=θ0 MSE(θ), i.e.
the unbiased estimator.
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• Motivated by (1.21), our next goal is to search for a biased estima-
tor, which results, hopefully, in a smaller MSE. Let us denote this
estimator as θ̂b.

• For the sake of illustration, and in order to order to limit our search
for θ̂b, we consider here only θ̂bs that are scalar multiples of θ̂MV U , so
that

θ̂b = (1 + α)θ̂MV U , (1.22)

where α ∈ R is a free parameter. Notice that E[θ̂b] = (1 + α)θ0.
By substituting (1.22) into (1.15) and after some simple algebra we
obtain

MSE(θ̂b) = (1 + α)2MSE(θ̂MV U) + α2θ20. (1.23)

• In order to get MSE(θ̂b) < MSE(θ̂MV U), α must be in the range

− MSE(θ̂MV U)

MSE(θ̂MV U) + θ2σ
< α < 0. (1.24)

• It is easy to verify that the previous range implies that |1 + α| < 1.
Hence, |θ̂b| = |(1 + α)θ̂MV U | < |θ̂MV U . We can go a step further and
try to compute the optimum value of α, which corresponds to the
minimum MSE. By taking the derivative of MSE(θ̂b) in (1.23) with
respect to α, it turns out that this occurs for

α∗ = − MSE(θ̂MV U)

MSE(θ̂MV U) + θ20
= − 1

1 +
θ20

MSE(θ̂MV U )

(1.25)

• Therefore, we have found a way to obtain the optimum estimator,
among those in the set θ̂b = (1 + α)θ̂MV U : α ∈ R, which results in
minimum MSE. This is true, but it is not realizable as the optimal
value of α is given in terms of the unknown θ0. However it does show
one important result: If we want to do better than the MVU, then,
one way is to shrink the norm of the MVU estimator.

• Shrinking the norm is a way of introducing bias into an estimator.

• What we have said so far is readily generalized to parameter vectors.
An unbiased parameter vector satisfies

E[Θ] = θ0,
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and the MSE around the true value, θ0, is defined as

MSE = E
[
(Θ− θ0)T (Θ− θ0)

]
• Looking carefully at the previous definition reveals that the MSE

for a paramter vector is the sum of the MSEs of the components,
θi, i = 1, 2, ..., l, around the corresponding true values θ0i.

Cramér-Rao Lower Bound

• The Cramér-Rao lower bound is an elegant theorem and one of the
most well-known techniques used in statistics. It provides a lower
bound on the variance of any unbiased estimator.

• This is very important because:

1. It offers the means to assert whether an unbiased estimator has
minimum variance, which, of course, in this case coincides with
the corresponding MSE in (1.15).

2. And if the above is not the case, it can be used to indicate how
far away the performance of an unbiased estimator is from the
optimal one.

3. Finally it provides the designer with a tool to known the best
possible performance that can be achieved by an unbiased esti-
mator.

• We are looking for a bound of the variance of an unbiased estimator,
whose randomness is due to the randomness of the training data.

Theorem 1 (Cramér-Rao Bound). Let x denote a random vector and
let X = x1, x2, ..., xN denote the set of N observations, correspond-
ing to a random vector. The corresponding joint pdf is parameterized
in terms of the parameter vector θ ∈ Rl. The log-likelihood is then
defined as,

L(θ) := log p(X ;θ).
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Define the Fisher’s Information Matrix as

J =


E
[
∂2 log p
∂θ21

]
E
[
∂2 log p
∂θ1∂θ2

]
· · · E

[
∂2 log p
∂θ1∂θl

]
...

... · · · ...

E
[
∂2 log p
∂θl∂θ1

]
E
[
∂2 log p
∂θl∂θ2

]
· · · E

[
∂2 log p
∂θ2l

]
 (1.26)

Let I := J−1 and let I(i, i) denote the ith diagonal element of I. If
θ̂i is any unbiased estimator of the ith component, θi, of θ, then the
corresponding variance of the estimator,

σ2
θ̂i
≥ I(i, i). (1.27)

This is known as the Cramér-Rao lower bound, and if an estimator
achieves this bound it is said to be efficient and it is unique.

• Moreover, the necessary and sufficient condition for obtaining an un-
biased estimator that achieves the bound is the existence of a function
g(·) such that for all possible values of θi,

∂ log p(X ; θ)

∂θi
= I(θ)(g(X − θ)). (1.28)

The MVU estimate is then given by

θ̂i = g(X ) := g(x1, x2, ..., xN ) (1.29)

and the variance of the respective estimator is equal to 1
I(θi)

Applied to Linear Regression

• Lets consider a simple linear regression model as seen below

yn = θx+ ηn

• To simplify the discussion, we assume that our N observations are the
result of different realizations of the noise variable ONLY (i.e. fixed
input x).
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• Further assume that ηn are samples of a Gaussian white noise with
zero mean and variance equal to σ2

η

• The joint pdf of the output observations is given by

p(y; θ) =
N∏
n=1

1√
2πσ2

η

exp−(yn − θ)2

2σ2
η

• We can derive the corresponding Cramér-Rao bound as follows:

∂ log p(y; θ)

∂θ
=

1

σ2
η

σn=1N(yn − θ) =
N

σ2
η

(ȳ − θ)

where

ȳ :=
1

N

N∑
n=1

yn

and the second derivative as required by the Cramér-Rao theorem

∂2 log p(y; θ)

∂θ2
= −N

σ2
η

.

• Hence

I(θ) =
N

σ2
η

and an efficient estimator would be

σ2
θ̂
≥
σ2
η

N

• We can easily verify that the corresponding estimator, ȳ is indeed an
unbiased one

E[ȳ] =
1

N

N∑
n=1

E[yn] =
1

N

N∑
n=1

E[θ + ηn] = θ

• For this particular task and having assumed that the noise is Gaussian,
the LS estimator is equal to the MVU estimator and it attains the
Cramér-Rao bound.
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• However, if the input is not fixed, but also varies from experiment to
experiment and the training data become (yn, xn), then the LS esti-
mator attains the Cramér-Rao bound only asymptotically, for large
values of N.

• Also if the assumptions for the noise being Gaussian and white are
not valid, then the LS estimator is not efficient anymore.

Sufficient Statistic

• If an efficient estimator does not exist, this does not necessarily mean
that the MVU estimator cannot be determined.

• The notion of sufficient statistic and the Rao-Blackwell theorem
help us here. Given a random vector, x which depends on parameter
θ, sufficient statistic for the unknown parameter is a function

T (X ) := T (x1, x2, ..., xN )

of the respective observations, which contains all information about
θ.

• From a mathematical point of view, a statistic T (X is said to be
sufficient for the paramter θ if the conditional joint pdf

p(X|T (X ; θ),

does not depend on θ and thus T (X ) must provide all information
about θ which is contained in the set X .

• Once T (X ) is known, X is no longer needed: hence the name ”suffi-
cient statistic” i.e. no more information can be extracted from X .

• In the case of parameter vectors θ, the sufficient statistic may be a
set of functions, called a jointly sufficient statistic.

Theorem 2 (Factorization Theorem). A statistic T (X ) is sufficient
if and only if the respective joint pdf can be factorized as

p(X ;θ) = h(X )g(T (X ),θ).

One part of the factorization only depends on the statistic and param-
eters, and a second part that is independent of the parameters.
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Applied to Linear Regression

• Let x be a Gaussian, N (µ, σ2), random variable and let the set of
observations be X = x1, x2, ..., xN . Assume µ to be the unknown
parameter.

• The joint pdf is given by

p(X ;µ) =
1

(2πσ2)
N
2

exp−
∑N

n=1(xn − µ)2

2σ2

• Given the identity

N∑
n=1

(xn − µ)2 =
N∑
n=1

(xn − Sµ)2 +N(Sµ − µ)2

the joint pdf becomes

p(X ;µ) =
1

(2πσ2)
N
2

exp−
∑N

n=1(xn − Sµ)2

2σ2
exp−

∑N
n=1N(Sµ − µ)2

2σ2

• Similarly if the unknown parameter is the variance σ2 then the suffi-
cient statistic is

S̄2
σ :=

1

N

N∑
n=1

(xn − µ)2

• If both µ and σ2 are unkown then the sufficient statistic is the set
(Sµ, S

2
σ) where

S2
σ :=

1

N

N∑
n=1

(xn − Sµ)2

1.4 Regularization

• One approach to improve the performance of an estimator is to shrink
the norm of the MVU estimator. Regularization is a mathematical
tool to impose a priori information on the structure of the solution,
which comes as the outcome of an optimization task.
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• We can reformulate the LS minimization task as

minimize: J(θ) =
N∑
n=1

(yn − θTxn)2 (1.30)

subject to: ||θ||2 ≤ ρ (1.31)

where || · || is the Euclidean norm of a vector.

• Here we do not allow the LS criterion to be completely “free” to
reach a solution, but we limit the space in which to search for it. The
optimal value of ρ cannot be analytically obtained and thus we have to
experiment in order to select an estimator that has good performance.

• Thus the optimization task for a LS loss function can be written as

minimize: L(θ, λ) =
N∑
n=1

(yn − θTxn) + λ||θ||2 (1.32)

which is often referred to as Ridge Regression.

• The specific choices of λ ≥ 0 and ρ are equivalent tasks.

• Taking the gradient of L in the equation above with respect to θ
results in the following solution:(

N∑
n=1

xnx
T
n + λI

)
θ̂ =

N∑
n=1

ynxn (1.33)

• The presence of λ biases the new solution away from that which would
have been obtained from the unregularized LS formulation. Thus
Ridge Regression aims to reduce the norm of the estimated vector at
the same time as trying to keep the sum of squared errors small.

• This is achieved by modifying the vector components, θi, so as to
reduce the contribution in the misfit measuring term from less infor-
mative directions in the input space.

• That is reducing the norm can be considered as an attempt to “sim-
plify” the structure of the estimator, because smaller number of com-
ponents of the regressor now have an important say.
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• Other regularizers can be used in place of the Euclidean norm, such
as the `p norms with p ≥ 1.

• In practice the bias paramter, θ0 is left out from the norm in the reg-
ularization term; penalization of the intercept would make the proce-
dure dependent on the origin chosen for y.

• Reducing the norm can be considered as an attempt to “simplify” the
structure of an estimator, because a smaller number of components
of the regressor now have an important say. This viewpoint becomes
more clear if one considers nonlinear models.

Inverse problems: Ill-conditioning and overfitting

• Most tasks in machine learning belong to the so-called inverse prob-
lems. This encompasses all the problems where one has to infer/predict/estimate
the values of a model based on a set of available input/output observations-
training data.

• In a less mathematical terminology, inverse problems unravel unkown
causes from known effects; in other words, to reverse the cause-effect
relations.

• Inverse problems are typically ill-posed, as opposed to the well-posed
ones. Well-posed problems are characterized by (a) the existence of
a solution, (b) the uniqueness of the solutions and (c) the stability of
the solution.

• In machine learning problems, the obtained solution may be very
sensitive to changes of the training set. Ill conditioning is another
term used to describe this sensitivity.

• The reson for ill-conditioning is that the model used to describe the
data can be complex; i.e. the number of the unknown free parameters
is large with respect to the number of data points. This is also known
as overfitting.

• Overfitting means that the estimated parameters of the unknown
model learn too much about the idiosyncrasies of the specific training
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data set, and the model performs badly when it deals with another
set of data, other than that used for the training.

• Regularization is an elegant and efficient tool to cope with the com-
plexity of a model; that is, to make it less complex, and more smooth.

• When dealing with more complex, compared to linear, models, one
can use constraints on the smoothness of the involved nonlinear func-
tion; for example, by involving derivatives of the model function in
the regularization term.

• Examples:

1. In the LS linear regression task, if the number, N, of the training
points is less than the dimension of the regressors xn, then the
`× ` matrix,

∑̄
=
∑

n xnx
T
n , is not invertible. Indeed, each term

in the summation is the outer product of a vector with itself and
hence it is a matrix of rank one. Thus, as we know from linear
algebra, we need at least ` linearly independent terms of such
matrices to guarantee that the sum is of full rank, hence invert-
ible. In ridge regression however, this can be bypassed, because
of the presence of λI guarantees that the matrix in invertible.

2. Another example where regularization can help to obtain a so-
lution, and, more important, a unique solution to an otherwise
unsolvable problem, is when the model’s order is large compared
to the number of data, albeit we know that it is sparse. That
is, only a very small percentage of the model’s paramters are
nonzero - here LS linear regression approach has no solution.
However, regularizing the LS loss function using the `1 norm of
the parameters’ vector can lead to a unique solution; the `1 norm
of a vector comprises the sum of absolute values of its compo-
nents.

• Regularization is also closely related tot he task of using priors in
Bayesian learning.
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