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Filtering credit markets

A unified state space for bond and CDS markets

Hazard, funding curves can be represented as hidden processes. From this basic
state, bond and credit default swaps can be computed using the usual present
value computations. Additional state, representing the width of the market at
various maturities, can be used to provide a rough estimate of where trading will
occur. The actual observed trades yti are considered noisy measurements of a
non-linear function of state xti .

yti = h (xti) + εi (1)

where h incorporates credit default swap or bond pricing formulas, depending on
the observation in question.
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Kalman filtering
Linearize by differentiation, for now. Then consider a sequence of observations
times t1, ..., tk at which our latent vector process x is observed indirectly, via an
observation equation

yti = Hixti + εi (2)

We assume εi is mean zero multivariate gaussian with covariance Ri. For brevity
we refer to yti as yi, xti as xi and so forth. We assume the evolution of x in
between the times specified can be written

xi+1 = Aixi + ui (3)

where ui are also gaussian. In this linear gaussian system the recursive estimation
of xt is achieved by the well known Kalman filter. I think we knew that already!

Peter Cotton | NYU Tandon Faculty Seminar April 27, 2016 12/42



Filtering credit markets

Issues
Stare at bond price time series for a while and you’ll quickly discover that every
assumption is violated

1. Brokered trades

2. Jumps

3. Lags

4. Off-market quotes

5. Funding peculiarities
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Filtering credit markets

Explaining and justifying pricing

The contemporaneous impact of an observation yk+1 is proportional to the
Kalman gain. (I think we knew that already too). This creates the pricing
narrative.

But most observations are not contemporaneous ...
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Historical importance of observations
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The derivatives of the Kalman filter estimate with respect to a past observation
yi is not something we see too often.

1. Re-represent the Kalman estimate in the form of a weighted least squares
problem (c.f. Duncan Horn representation).

2. Compute sensitivities of the solution of the weighted least squares problem.
Sometimes a little adjoint trick helps here.
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Kalman as least squares on the current state

Sketch: We set up a least squares problem involving the current state xk only.
The solution to this problem is identical to the Kalman filter’s current estimate.
This establishes that the current estimate ŷk is a simple linear function of the
current state xk, so we can compute the derivative of the current estimate with
respect to all previous observations.
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To be tidy, assume a gaussian prior on the initial state x0. To avoid annoying
special cases in what follows, we clean up the notation by indexing back to −1
as follows:

y−1 = H−1x−1 + ε−1

x0 = A−1x−1 + u−1

and here H−1 and A−1 are identity matrices, ε−1 is identically zero, y−1 is set
equal to the mean of our prior and u0 adopts its covariance.

With the boundary conditions cleaned up in this fashion we can invert the
dynamical equations, assuming only that A’s have left inverses A−1, as follows:

xj = A−1
j (xj+1 − uj) (4)

and then re-arrange the observation equations so that the only value of xi that
appears is xk.
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The inversion looks like:

yk = Hkxk + εk

yk−1 = Hk−1xk−1 + εk−1

= Hk−1
(
A−1
k−1 (xk − uk−1)

)
+ εk−1

= Hk−1A
−1
k−1xk −Hk−1A

−1
k−1uk−1 + εk−1

yk−2 = Hk−2xk−2 + εk−2

= Hk−2
(
A−1
k−2 (xk−1 − uk−2)

)
+ εk−2

= Hk−2A
−1
k−2xk−1 −Hk−2A

−1
k−2uk−2 + εk−2

= Hk−2A
−1
k−2

(
A−1
k−1 (xk − uk−1)

)
−Hk−2A

−1
k−2uk−2 + εk−2

= Hk−2A
−1
k−2A

−1
k−1xk −Hk−2A

−1
k−2A

−1
k−1uk−1 −Hk−2A

−1
k−2uk−2 + εk−2

. . .
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From which it is apparent that if we write Y = (yk, yk−1, yk−2, ..., y−1) then

Y = Gxk + η (5)

where G is the concatenation of the coefficients of xk given above and η is the
gaussian random variable equal to the sum of uk’s and εk’s. Thus we have a
simple least squares problem for the contemporaneous state xk which is not
dissimilar to the Duncan-Horn representation of the Kalman filter.
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Sensitivities of the least square problem
Suppose x solves Qx = b(y). We wish to compute the derivative of g(x) w.r.t. y
(because, to recap this will tell traders how important every historical observation
is to the current price estimate whether or not the observation pertains to a bond
in question).

In particular, if y is the observation and x the solution of a generalized least
squares problem with error co-variance R we can cast it in this form by writing:

g(x) = Hx

Q = HTR−1H

b(y) = HTR−1y

Consider now
f(x, y) = 0 (6)

Peter Cotton | NYU Tandon Faculty Seminar April 27, 2016 29/42



Filtering credit markets

where
f(x, y) = Qx− b(y) (7)

We use derivatives of
g̃ = g − λT f(x, y) (8)

with respect to y as a means of computing derivatives of g with respect to y.
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Note that
∂g̃

∂y
= ∂g

∂x

∂x

∂y
− λT

(
∂f

∂x

∂x

∂y
+ ∂f

∂y

)
(9)

and this will simplify if we choose λ judiciously as a solution of

∂g

∂x
= λT

∂f

∂x
(10)

which is the adjoint equation. For then

∂g̃

∂y
= ∂g

∂x

∂x

∂y
− λT

(
∂f

∂x

∂x

∂y
+ ∂f

∂y

)
(11)

= −λT ∂f
∂y

(12)

= λT
∂b

∂y
(13)
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Now specializing to
g(x) = Hx (14)

and b(y) as above we can solve for this convenient choice of λ by writing

H = ∂g

∂x
(15)

= λT
∂f

∂x
(16)

= λTQ (17)
= λTHTR−1H (18)

where the second equality is the adjoint equation. Thus we can compute derivatives
of g̃ with respect to y, and thereby compute derivatives of g with respect to y
which is what we set out to do.

Peter Cotton | NYU Tandon Faculty Seminar April 27, 2016 32/42



Filtering credit markets

Accuracy

At some point you have to explain the accuracy of your prices to clients. On the
vendor side it is sometimes argued that customers are insensitive to pricing quality
and the service is therefore sticky. This is party true but that argument presumes
there will be no material change in market structure or competitive forces. In
fact major buy side firms are gearing up to better quantify their transaction costs
relative to peers. Others wish to use their inventory to generate alpha. And
sell-side firms look for lower cost means of making markets and even assessing
traders.

Unfortunately, accuracy is a subtle beast...
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A simple target
The next inter-dealer trade. Issues:

1. Rare for many bonds

2. Noisy

3. Repeated

4. Paired

5. Serially correlated
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A time, size and money-under-the-bridge weighted target
Fix some moment t at which a price is supplied by a vendor and consider the J
subsequent inter-dealer trades:

FV T (t; J) =
∑J
j=1 pjsje

−(tj−t)e−M
−
j∑J

j=1 sje
−(tj−t)e−M

−
j

(19)

where pj , sj and tj are the price, size and time of subsequent inter-dealer trades
with time measured in business days and

M−j = 1
c

j−1∑
k=1

sk (20)

is the cumulative trading volume up to but not including the trade in question.
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Fixing an inconsistency

The use of M−j is slightly unnatural because it means the target is not invariant
to splitting of future trades. We can easily fix this, however, by integrating in
money instead of time.

FV T ′(t; J) =
∫M+

J

m=0 p(m)e−me−(t(m)−t)dm∫M+
J

m=0 e
−me−(t(m)−t)dm

where M+
J := M−J+1 is the total amount of money under the bridge up to and

including the J ’th trade, p(m) is the price when m dollars of trading has occurred,
and t(m) − t is the time we have progressed when m dollars of trading has
occurred.
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Multivariate filters seemingly perform worse then univariate
A more serious issue with accuracy measures for bond pricing relates to the
inefficiency in the market. One needs to be careful not to reward univariate
models (treating only the bond in question) for over-fitting. A stylized simulation
to prove the point following West and Papanicoloau can run as follows. Disregard
funding rates and use piece-wise hazards:

λ(t) = λi, ti−1 ≤ ti (21)

so that yields

yi =
∫ Ti

0
λ(t)dt (22)

are clearly linear in the hazard rates.
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Assume now that hazards are independent random walks

λk(tdt) = λk(t) +N(0, dtσ2
k) (23)

and for simplicity set σ1 = 0.1, σ2 = 0.05 and σ3 = 0.01. Assume bond prices
are observed at times generated by a self-exciting Hawkes process:

dct = (ct − c)e−κt + fdNt (24)

West and Papanicolaou studied various types of bonds based on these parameters.
They then used both univariate and multivariate Kalman filters, and also a simple
model where the estimate was simply the last trade observation.
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Last Trade Univariate K.F. Multivariate K.F.
Apparent error 0.020 0.0377 0.0383
Actual error 0.056 0.0512 0.0286

Table 1: Apparent error when measured against the next trade, and actual
error against ground truth. In a simulation the model that simply
uses the last trade of the bond in question appears to perform
better than the multivariate Kalman filter applied to the entire
curve - but that is an illusion. Numbers courtesy of Nick West
and George Papanicolaou.
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Serial correlation distorts accuracy metrics

A related problem occurs if we assume that trade observations are serially correlated
errors with respect to some ground truth. Simple models can over-fit but appear
to perform well in simple accuracy statistics.

With all that said ... here is a comparison between the current version of
Benchmark, built by A.J. Linderman, Antoine Toussaint et al, and a prominent
vendor offering real-time pricing. (We can’t compare the original Benchmark
pricing service as there were no other real-time services at the time).
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Time since last trade Market leader BMRK Count
5 - 20 mins 0.238 0.140 7,348
20 mins -2 hr 0.215 0.156 9,326
2hr - 4hr 0.250 0.174 726
4hr - 10 hr 0.217 0.159 5,931
10hr - 2 days 0.217 0.171 2,613
2 days - 1 week 0.234 0.189 4,738

30,672

Vendor comparison
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