Jennifer Iler IAT_EXHomework January 20, 2016

Problem 1

The reduced cubic equation $y^3 + 3py + 2q = 0$ has one real and two complex solutions when $D = q^2p^3 > 0$. These are given by Cardanos formula as

$$y_1 = u + v, \quad y_2 = -\frac{u+v}{2} + \frac{i}{2}\sqrt{3}(u-v), \quad y_3 = -\frac{u+v}{2} - \frac{i}{2}\sqrt{3}(u-v)$$

where

$$u = \sqrt[3]{-q + \sqrt{q^2 + p^3}}, \quad v = \sqrt[3]{-q - \sqrt{q^2 + p^3}}$$

Problem 2

Each of the measurements $x_1 < x_2 \cdots < x_r$, occurs p_1, p_2, \dots, p_r times. The mean value and standard deviation are then

$$x = \frac{1}{n} \sum_{i=1}^{r} p_i x_i, \quad s = \sqrt{\frac{1}{n} \sum_{i=1}^{r} p_i (x_1 - x)^2}$$

where $n = p_1 + p_2 + \dots + p_r$.

Problem 3

Although this equation looks very complicated, it should not present any great difficulties:

$$\int \frac{\sqrt{(ax+b)^3}}{x} \, dx = \frac{\sqrt[2]{(ax+b)^3}}{3} + 2b\sqrt{ax+b} + b^2 \int \frac{dx}{x\sqrt{ax+b}}$$

The same applies to $\int_{1}^{8} \left(\frac{dx}{\sqrt[3]{x}}\right) = \frac{3}{2}(8^{2/3} + 1^{2/3}) = \frac{15}{2}.$

Problem 4

The gamma function $\Gamma(x)$ is defined as

$$\Gamma(x) = \lim_{n \to \infty} \prod_{i=1}^{n-1} \frac{n! n^{x-1}}{x+v} \equiv \int_0^\infty e^{-t} t^{x-1} dt.$$

The integral definition is valid only for x > 0 (2nd Euler integral).

Problem 5

The total number of permutations of n elements taken m at a time (symbol $p_n^m)$ is

$$p_n^m = \prod_{i=0}^{m-1} (n-i) = \underbrace{n(n-1)(n-2)\cdots(n-m+1)}_{\text{total of m factors}} = \frac{n!}{(n-m)!}.$$

Problem 6

$$\mathcal{M}^{\beta}(\tau_{0},\psi_{0}) = \frac{2\mathcal{C}_{4}\tilde{\beta}}{3\mathcal{C}_{1}} + \frac{2\pi\mathcal{C}_{3}\tilde{\eta}\tilde{\omega}^{2}}{\mathcal{C}_{1}^{2}} \bigg[\frac{\sin(\tilde{\omega}\tau_{0}+\psi_{0})}{\sinh[\pi\tilde{\omega}(2C_{1})]} + \tilde{\eta}\frac{\sin(2\tilde{\omega}\tau_{0}+\psi_{0})}{\sinh[\pi\tilde{\omega}(C_{1})]} \bigg].$$

Problem 7

$$\sum^{\psi_0} = \{(\theta, \varphi, \psi) \in \mathbb{R} \times \mathbb{R} \times S^1 | \psi = \psi_0 \}.$$

Problem 8

For integers m,n with $n \ge 4$ even, and $2 \le m < n$, the expansion factor of $SK_{m,n}$ is given by

$$\varepsilon(SK_{m,n}) = \begin{cases} \frac{n}{2m} & \text{if } 2 \le m < \frac{n}{4} \\ 2 & \text{if } \frac{n}{4} \le m < \frac{n}{2} \\ \frac{3n-2-2m}{n} & \text{if } \frac{n}{2} \le m < \frac{3n}{4} \\ 1 + \frac{2}{n} \lfloor \frac{n-2}{4} \rfloor & \text{if } \frac{3n}{4} \le m < n. \end{cases}$$