Practical I : Unit II
 Digital Signal Processing (ICE-410)

Mobarak Hosen Shakil
Roll: 1418006
Reg: 1321
Session: 14-15
Department of Information and Communication Engineering
Islamic University, Kushtia-7003, Bangladesh
Email: mhshakil_ice_iu@yahoo.com

27th January, 2019

Problem 1: Use MATLAB to generate exponential signal of $x(t)=B * e^{(-a * t)}$ with (i) a decaying exponential where a is positive and (ii) a growing exponential where a is negative. If time interval from 0 to $1 s$ and $a=6, B=5$.

Solution: To generate a decaying exponential signal, the mathematical equation is

$$
\begin{equation*}
x(t)=B * e^{(-a * t)} \tag{1}
\end{equation*}
$$

and to generate a growing exponential signal, the mathematical equation is

$$
\begin{equation*}
x(t)=B * e^{(a * t)} \tag{2}
\end{equation*}
$$

Code:

```
1% Problem: Use MATLAB to generate exponential signal of x(t) = B?e^(?a?t) with (i)
    a decaying exponential where a is positive and (ii) a growing exponential where
    a is negative. If time interval from 0 to 1s and a=6, B=5.
clc;
clear;
a=6;
B=6;
t=0:0.001:1;
x=B*exp(-a*t); %To generate decaying exponential graph
y=B*exp(a*t); %To generate growing exponential graph
figure ();
plot(t, x);
figure ();
plot(t, y);
grid on;
```

To visualize a discrete-time signal, we may use the stem command. Specifically, stem (n, x) depicts the data contained in vector x as a discrete-time signal at the time values defined by n. The vectors n and x must have compatible dimension.

Figure 1: Continuous-time decaying exponential signal where $a>0$, i.e., a is positive.

Figure 2: Continuous-time growing exponential signal where $a>0$, i.e., a is negative.

