
Kernel Optimization: Modifying Multiple Tasks

Related Variables

Authors: Lázaro Cárdenas Guerrero & Alfonso Ruiz Velasco Ramı́rez

October 16 2016

1 Abstract

This document describes some kernel and memory variables, the fact that they
affect how the system performs as a whole, and shows the results of some testing
while modifying the variables described.

For an easier visualization we made some tables and graphs with the re-
sults and because of that our conclusions can be explained easier and clearer.
We ended up thinking that testing is harder than it seems, and it takes time,
patience and dedication to actually discover an improvement on the system.

2 Introduction

The operating system is the core of a computer. It manages its resources, and
serves as an interface between the users and the computer. However, it is also
tasked with managing the processes and deciding which one shall run next. This
is made possible by the scheduler, a program in charge of loading processes into
main memory and the CPU.

The scheduler is a complex program full of different variables that affect the
computer’s performance, such as latency, minimum granularity, migration cost,
among others. It is important to understand how the scheduler behaves based
on the value of these variables.

With this knowledge we could find ways to improve the scheduler of the OS
based only on the values of each variable. An optimization on performance of
the already existing scheduler could be found if the correct values are modified.

In order to do so, a stress test is to be applied several times. This with the
objective of observing the performance of the scheduler when it is overloaded
with tasks. The methodology to do this is explained on the development section.

3 Theoretical Framework

The kernel is composed about many things, so many that maybe changing one
single variable won’t change the end result that much, but, every little bit of
information forcefully has to make an impact on the final product, no matter if
it’s a tiny change, it makes it different from how it would be without it.

1



In this section you’ll get to know the variables that were modified during
the experiments. Most of them are kernel variables:

• kernel.sched nr migrate: This variable is used to balance the ammount of
tasks that will be sent to other CPUs to balance the workload between
cores. This variable specifically states the number of tasks that will be
moving at a time. Increasing the value of this variable will lead to an
improvement in performance for threads that spawn a lot of tasks, but at
the expense of realtime latencies.[1]

• kernel.sched min granularity ns: This variable refers to the minimum amount
a time a process needs to run before it is preempted.[2]

• kernel.sched migration cost ns: This variable determines how long a mi-
grated process has to be running before the kernel will consider migrating
it again to another core. Setting this variable to the right value can lead
to an improvement when handling many connections in a server.[3]

• kernel.sched latency ns: It is the time that happens between the moment
when the kernel gets a signal about an interrupt or event happening,
and the moment when the scheduler has the opportunity to schedule the
waiting thread or process related to the event.[4]

But there is also a memory variable that was tested:

• vm.swappiness: This is a variable with a ranged value from 0 to 100 that
controls the degree to which the system favors anonymous memory or
the page cache. A high value improves file-system performance, while
aggressively swapping less active processes out of physical memory. A low
value tries not to swap processes out of memory, which usually decreases
latency, at the cost of I/O performance.[1]

4 Objective

Our main goals while testing were to understand how the different variables in
the kernel worked, and to find an improvement in the system as a whole, if this
couldn’t be achieved, we stated that our goal would be to justify the reasons
that made us jump to that conclusion.

5 Justification

We started doing this benchmark because we wanted to know how hard could
it be to find an improvement in performance, the variables we chose weren’t
chosen at random, those variables include the number of tasks that can be
moved at a time, how much should we swap , how much should we wait to move
a task from one core to another, or to preempt it, and how does that affects
latency as a whole. The stress test we applied works perfectly fine with this
variables, as it puts a big workload onto the processor, and makes the kernel
scheduler work really hard to keep up with the big amount of requests, with
an almost full workload we thought that the kernel scheduler would split tasks

2



among the cores, and by that, it would show different results depending on the
specifications we gave it about dividing the tasks.

If we had succeeded, we would have discovered a way to make a computer
work faster, and right about now, the people want faster computers, but also
they don’t want them to be more expensive, or bigger, working on a computer
by improving it’s software makes everyone save money on the hardware because
of an optimization in the logic behind everything, doing this also leads to an
evolution of the software, of how problems are handled and solved, with better
techniques, computers will be able to solve more complex problems with the
same resources and in less time.

1. This is how we use bold letters:

2. 2nd item in the list:

6 Development

We selected and changed the variables mentioned before and we tested them
with stress.io from the software phoronix. Each variable was tested 4 times
with a modified value and 1 time with the default one, we did that to see (insert
something here).

Each test was documented and the results table can be found in the Results
section. From the table, a graph was made for each variable, comparing its
value against (insert what we are comparing).

It is important to note that each test took between 7 and 11 minutes, so the
total amount of time taken to capture information was about 3:30 hours. Look
forward on the next section for the obtained results.

41 lines 9 paragraphs.

7 Results

After doing the stress.io test, we got the results that we show in the tables
below.

Test kernel.sched nr migrate MB/s
#1 24 26.38
#2 28 26.65
#3 32 (default) 25.01
#4 36 25.98
#5 40 25.39

Table 1: kernel.sched nr migrate test

3



Test kernel.sched min granularity ns MB/s
#1 2000000 26.98
#2 2125000 26.38
#3 2250000 (default) 25.01
#4 2375000 26.82
#5 2500000 26.48

Table 2: kernel.sched min granularity ns test

Test kernel.sched migration cost ns MB/s
#1 300000 26.40
#2 400000 29.62
#3 500000 (default) 25.01
#4 600000 26.69
#5 700000 26.83

Table 3: kernel.sched migration cost ns test

4



Test kernel.sched latency ns MB/s
#1 9000000 27.61
#2 12000000 25.58
#3 15000000 27.82
#4 18000000 (default) 25.01
#5 21000000 25.04

Table 4: kernel.sched latency ns test

Test vm.swappiness MB/s
#1 40 25.93
#2 50 26.59
#3 60 (default) 25.01
#4 70 25.95
#5 80 25.12

Table 5: vm.swappiness test

5



8 Conclusion

With the results it can be concluded that even though the variables were mod-
ified considerably, the results didn’t show any important changes on perfor-
mance. Therefore, it can be assumed that finding modifications that result on
improvements on the scheduler can be a very difficult task.

For this reason a lot of testing is required to improve an operating system’s
performance based on modification of the scheduler and memory variables. Au-
tomatized tests would be more efficient than human managed tests, because a
lot of time is needed to experiment with the biggest spectrum of values possible.
But there should always be someone who’ll check the end results of the tests,
and the upsides/downsides of the changes needed to achieve those results (extra
memory usage, latency, etc).

9 References

References

[1] Red Hat.(2016).Red Hat Enterprise MRG 1.2 Realtime Tuning Guide. Ad-
vanced tuning procedures for the Realtime component of Red Hat Enterprise
MRG. Retrieved from: https://access.redhat.com/documentation/

en-US/Red_Hat_Enterprise_MRG/1.2/html/Realtime_Tuning_Guide/

sect-Realtime_Tuning_Guide-Realtime_Specific_Tuning-Using_

sched_nr_migrate_to_limit_SCHED_OTHER_processes..html

[2] openSUSE.(2011).System Analysis and Tuning Guide. Retrieved from:
https://doc.opensuse.org/documentation/html/openSUSE_121/

opensuse-tuning/cha.tuning.taskscheduler.html

[3] Tweaked.(2012).The GNU/Linux Kernel. Retrieved from: https://

tweaked.io/guide/kernel/

[4] EE Times.(2002). Linux scheduler latency. Retrieved from: http://www.

eetimes.com/document.asp?doc_id=1200916

6

https://access.redhat.com/documentation/en- US/Red_Hat_Enterprise_MRG/1.2/html/Realtime_Tuning_Guide/sect-Realtime_Tuning_Guide-Realtime_Specific_Tuning-Using_sched_nr_migrate_to_limit_SCHED_OTHER_processes..html
https://access.redhat.com/documentation/en- US/Red_Hat_Enterprise_MRG/1.2/html/Realtime_Tuning_Guide/sect-Realtime_Tuning_Guide-Realtime_Specific_Tuning-Using_sched_nr_migrate_to_limit_SCHED_OTHER_processes..html
https://access.redhat.com/documentation/en- US/Red_Hat_Enterprise_MRG/1.2/html/Realtime_Tuning_Guide/sect-Realtime_Tuning_Guide-Realtime_Specific_Tuning-Using_sched_nr_migrate_to_limit_SCHED_OTHER_processes..html
https://access.redhat.com/documentation/en- US/Red_Hat_Enterprise_MRG/1.2/html/Realtime_Tuning_Guide/sect-Realtime_Tuning_Guide-Realtime_Specific_Tuning-Using_sched_nr_migrate_to_limit_SCHED_OTHER_processes..html
https://doc.opensuse.org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.taskscheduler.html
https://doc.opensuse.org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.taskscheduler.html
https://tweaked.io/guide/kernel/
https://tweaked.io/guide/kernel/
http://www.eetimes.com/document.asp?doc_id=1200916
http://www.eetimes.com/document.asp?doc_id=1200916

	Abstract
	Introduction
	Theoretical Framework
	Objective
	Justification
	Development
	Results
	Conclusion
	References

