

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

Krylov Subspace Methods in Model Order Reduction

Mohammad Umar Rehman

PhD Candidate, EE Department, IIT Delhi umar.ee.iitd@gmail.com

March 8, 2016

Outline

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

1 Introduction

2 Moments & Markov Parameters

3 Krylov Subspace

- 4 Moment Matching
- 5 Issues with Krylov Methods
 - Orthogonalization
 - Stopping Criteria

Introduction

Model Reduction Problem Revisited

Krylov Methods in MOR

Given a MIMO state space model

$$\mathbf{E}\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

 $\mathbf{y} = \mathbf{C}\mathbf{x}$

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria where, $\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{u} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^p, \mathbf{x} \in \mathbb{R}^n$ and n is sufficiently large. (1)

Introduction

Model Reduction Problem Revisited

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Given a MIMO state space model

$$\begin{aligned} \mathbf{E}\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \\ \mathbf{y} &= \mathbf{C}\mathbf{x} \end{aligned} \tag{1}$$

where, $\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{u} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{p}, \mathbf{x} \in \mathbb{R}^{n}$ and n is sufficiently large. It is required to obtain the following reduced order model

$$\begin{aligned} \mathbf{E}_{\mathbf{r}} \dot{\mathbf{z}} &= \mathbf{A}_{\mathbf{r}} \mathbf{z} + \mathbf{B}_{\mathbf{r}} \mathbf{u} \\ \mathbf{y} &= \mathbf{C}_{\mathbf{r}} \mathbf{z} \end{aligned}$$
 (2)

where,
$$\mathbf{E}_{\mathbf{r}}, \mathbf{A}_{\mathbf{r}} \in \mathbb{R}^{q \times q}, \mathbf{B}_{\mathbf{r}} \in \mathbb{R}^{q \times m}, \mathbf{C}_{\mathbf{r}} \in \mathbb{R}^{p \times q},$$

 $\mathbf{u} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{p}, \mathbf{z} \in \mathbb{R}^{q} \quad q \ll n$
 $\mathbf{E}_{\mathbf{r}} = \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V}, \mathbf{A}_{\mathbf{r}} = \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V}, \mathbf{B}_{\mathbf{r}} = \mathbf{W}^{\mathsf{T}} \mathbf{B}, \mathbf{C}_{\mathbf{r}}^{\mathsf{T}} = \mathbf{C}^{\mathsf{T}} \mathbf{V}$

Introduction

Model Reduction Problem Revisited

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria Given a MIMO state space model

$$\begin{aligned} \mathbf{E}\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \\ \mathbf{y} &= \mathbf{C}\mathbf{x} \end{aligned} \tag{1}$$

where, $\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{u} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^p, \mathbf{x} \in \mathbb{R}^n$ and n is sufficiently large. It is required to obtain the following reduced order model

$$\begin{aligned} \mathbf{E}_{\mathbf{r}} \dot{\mathbf{z}} &= \mathbf{A}_{\mathbf{r}} \mathbf{z} + \mathbf{B}_{\mathbf{r}} \mathbf{u} \\ \mathbf{y} &= \mathbf{C}_{\mathbf{r}} \mathbf{z} \end{aligned}$$
 (2)

where,
$$\mathbf{E}_{\mathbf{r}}, \mathbf{A}_{\mathbf{r}} \in \mathbb{R}^{q \times q}, \mathbf{B}_{\mathbf{r}} \in \mathbb{R}^{q \times m}, \mathbf{C}_{\mathbf{r}} \in \mathbb{R}^{p \times q},$$

 $\mathbf{u} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{p}, \mathbf{z} \in \mathbb{R}^{q} \quad q << n$
 $\mathbf{E}_{\mathbf{r}} = \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V}, \mathbf{A}_{\mathbf{r}} = \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V}, \mathbf{B}_{\mathbf{r}} = \mathbf{W}^{\mathsf{T}} \mathbf{B}, \mathbf{C}_{\mathbf{r}}^{\mathsf{T}} = \mathbf{C}^{\mathsf{T}} \mathbf{V}$
 \mathbf{W}, \mathbf{V} are suitable Krylov subspace based projection matrices.

Moments and Markov Parameters

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria The transfer function of the system in (1) is

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$

By assuming that ${\bf A}$ is nonsingular, the Taylor series of this transfer function around zero is:

$$\mathbf{G}(s) = -\mathbf{C}\mathbf{A}^{-1}\mathbf{B} - \mathbf{C}(\mathbf{A}^{-1}\mathbf{E})\mathbf{A}^{-1}\mathbf{B}s - \dots - \mathbf{C}(\mathbf{A}^{-1}\mathbf{E})^{i}\mathbf{A}^{-1}\mathbf{B}s^{i} - \dots$$

Coefficients of powers of \boldsymbol{s} are known as moments i-th moment:

$$\mathbf{M}_i^0 = \mathbf{C} (\mathbf{A^{-1} E})^{\mathbf{i}} \mathbf{A^{-1} B}, \quad i = 0, 1, \dots$$

Also,

$$\mathbf{M}_{i}^{0} = -\frac{1}{i} \frac{d^{i} \mathbf{G}(s)}{ds^{i}} \Big|_{s=0}$$

is the value of subsequent derivatives of the transfer function $\mathbf{G}(s)$ at the point s=0

4/20

Krylov Methods in MOR A different series in terms of negative powers of s is obtained when expanded about $s \to \infty$

 $\mathbf{G}(s) = \mathbf{C}\mathbf{E}^{-1}\mathbf{B}s^{-1} + \mathbf{C}(\mathbf{E}^{-1}\mathbf{A})\mathbf{E}^{-1}\mathbf{B}s^{-2} + \dots + \mathbf{C}(\mathbf{E}^{-1}\mathbf{A})^{\mathbf{i}}\mathbf{E}^{-1}\mathbf{B}s^{-i} + \dots$

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria and the coefficients are known as Markov parameters.

- Model reduction is achieved by the means of matching of Moments (Markov parameters)
- Explicit moment matching becomes numerically cumbersome for large system order

Krylov Methods in MOR A different series in terms of negative powers of s is obtained when expanded about $s \to \infty$

 $\mathbf{G}(s) = \mathbf{C}\mathbf{E}^{-1}\mathbf{B}s^{-1} + \mathbf{C}(\mathbf{E}^{-1}\mathbf{A})\mathbf{E}^{-1}\mathbf{B}s^{-2} + \dots + \mathbf{C}(\mathbf{E}^{-1}\mathbf{A})^{\mathbf{i}}\mathbf{E}^{-1}\mathbf{B}s^{-i} + \dots$

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping and the coefficients are known as Markov parameters.

- Model reduction is achieved by the means of matching of Moments (Markov parameters)
- Explicit moment matching becomes numerically cumbersome for large system order
- Go for *implicit* moment matching: Krylov subspace based Projection

Remarks 1

- Krylov Methods in MOR
- Introduction
- Moments & Markov Parameters
- Krylov Subspace
- Moment Matching
- Issues with Krylov Methods Orthogonalization Stopping Criteria

- Asymptotic Waveform Evaluation (AWE) method is based on explicit moment matching
- Matching at s = 0 is known as Padé Approximation, and steady state response (low frequency) is reflected in the reduced order model.
- Matching at $s \to \infty$ is known as Partial Realization, and the reduced order model is a good approximation of the HF response.
- Matching at s = s₀, i. e. at some arbitrary value of s is known as Rational Interpolation and is aimed at approximating system response at specific frequency band of interest.

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\mathcal{K}_q(\mathbf{A}, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \dots, \mathbf{A}^{q-1}\mathbf{b}\}$$

• $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$ is called the starting vector. q is some given positive integer called index of the Krylov sequence.

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\mathcal{K}_q(\mathbf{A}, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \dots, \mathbf{A}^{q-1}\mathbf{b}\}$$

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$ is called the starting vector. q is some given positive integer called index of the Krylov sequence.
- \blacksquare The vectors $\mathbf{b}, \mathbf{Ab}, \dots$, constructing the subspace are called basic vectors.

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\mathcal{K}_q(\mathbf{A}, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \dots, \mathbf{A}^{q-1}\mathbf{b}\},\$$

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$ is called the starting vector. q is some given positive integer called index of the Krylov sequence.
- \blacksquare The vectors $\mathbf{b}, \mathbf{Ab}, \dots$, constructing the subspace are called basic vectors.
- The Krylov subspace is also known as *controllability* subspace in control community.

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping

$$\mathcal{K}_q(\mathbf{A}, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \dots, \mathbf{A}^{q-1}\mathbf{b}\}$$

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$ is called the starting vector. q is some given positive integer called index of the Krylov sequence.
- \blacksquare The vectors $\mathbf{b}, \mathbf{Ab}, \dots$, constructing the subspace are called basic vectors.
- The Krylov subspace is also known as *controllability* subspace in control community.
- For each state space, there are two Krylov subspaces that are dual to each other, input Krylov subspace and output Krylov subspace.
- Either or both of subspaces can be used as projection matrices for model reduction.

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\mathcal{K}_q(\mathbf{A}, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \dots, \mathbf{A}^{\mathbf{q}-1}\mathbf{b}\}$$

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$ is called the starting vector. q is some given positive integer called index of the Krylov sequence.
- \blacksquare The vectors $\mathbf{b}, \mathbf{Ab}, \dots$, constructing the subspace are called basic vectors.
- The Krylov subspace is also known as *controllability* subspace in control community.
- For each state space, there are two Krylov subspaces that are dual to each other, input Krylov subspace and output Krylov subspace.
- Either or both of subspaces can be used as projection matrices for model reduction.
- The respective method is then called One-Sided/Two-sided

Input and Output Krylov Subspaces

Krylov Methods in MOR Input Krylov subspace

Output Krylov Subspace

$$\mathcal{K}_{q_1}\left(\mathbf{A^{-1}E}, \mathbf{A^{-1}b}\right) = \operatorname{span}\left\{\mathbf{A^{-1}b}, \dots, \left(\mathbf{A^{-1}E}\right)^{q_1-1}\mathbf{A^{-1}b}\right\}$$

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\mathcal{K}_{q_2}\left(\mathbf{A^{-T}E^{T}}, \mathbf{A^{-T}c}\right) = \operatorname{span}\left\{\mathbf{A^{-T}c}, \dots, \left(\mathbf{A^{-T}E^{T}}\right)^{q_2-1}\mathbf{A^{-T}c}\right\}$$

Input and Output Krylov Subspaces

Krylov Methods in MOR Input Krylov subspace

I

$$\mathcal{K}_{q_1}\left(\mathbf{A^{-1}E}, \mathbf{A^{-1}b}\right) = \operatorname{span}\left\{\mathbf{A^{-1}b}, \dots, \left(\mathbf{A^{-1}E}\right)^{q_1-1}\mathbf{A^{-1}b}\right\}$$

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria Output Krylov Subspace

$$\mathcal{K}_{q_2}\left(\mathbf{A^{-T}E^{T}}, \mathbf{A^{-T}c}\right) = \operatorname{span}\left\{\mathbf{A^{-T}c}, \dots, \left(\mathbf{A^{-T}E^{T}}\right)^{q_2-1}\mathbf{A^{-T}c}\right\}$$

V is any basis of Input Krylov Subspace W is any basis of Output Krylov Subspace

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria **Theorem** If the matrix V used in (2), is a basis of Krylov subspace $\mathcal{K}_{q_1}(\mathbf{A^{-1}E}, \mathbf{A^{-1}b})$ with rank q and matrix W is chosen such that the matrix \mathbf{A}_r is nonsingular, then the first qmoments (around zero) of the original and reduced order systems match.

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria Proof: The zero-th moment of the reduced system is

$$m_{r0} = \mathbf{c}_r^\mathsf{T} \mathbf{A}_r^{-1} \mathbf{b}_r = \mathbf{c}^\mathsf{T} \mathbf{V} \left(\mathbf{W}^\mathsf{T} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^\mathsf{T} \mathbf{b}$$

The vector $A^{-1}b$ is in the Krylov subspace and it can be written as a linear combination of the columns of the matrix V,

$$\exists \mathbf{r}_0 \in \mathbb{R}^q : \mathbf{A}^{-1}\mathbf{b} = \mathbf{V}\mathbf{r}_0$$

Therefore,

$$\left(\mathbf{W}^{\mathsf{T}}\mathbf{A}\mathbf{V}\right)^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{b} = \left(\mathbf{W}^{\mathsf{T}}\mathbf{A}\mathbf{V}\right)^{-1}\mathbf{W}^{\mathsf{T}}\left(\mathbf{A}\mathbf{A}^{-1}\right)\mathbf{b}$$

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria Proof: The zero-th moment of the reduced system is

$$m_{r0} = \mathbf{c}_r^\mathsf{T} \mathbf{A}_r^{-1} \mathbf{b}_r = \mathbf{c}^\mathsf{T} \mathbf{V} \left(\mathbf{W}^\mathsf{T} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^\mathsf{T} \mathbf{b}$$

The vector $A^{-1}b$ is in the Krylov subspace and it can be written as a linear combination of the columns of the matrix V,

$$\exists \mathbf{r}_0 \in \mathbb{R}^q : \mathbf{A}^{-1}\mathbf{b} = \mathbf{V}\mathbf{r}_0$$

Therefore,

$$\begin{pmatrix} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \end{pmatrix}^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{b} = \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{-1} \right) \mathbf{b}$$
$$= \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \mathbf{r}_{0}$$

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria Proof: The zero-th moment of the reduced system is

$$m_{r0} = \mathbf{c}_r^\mathsf{T} \mathbf{A}_r^{-1} \mathbf{b}_r = \mathbf{c}^\mathsf{T} \mathbf{V} \left(\mathbf{W}^\mathsf{T} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^\mathsf{T} \mathbf{b}$$

The vector $A^{-1}b$ is in the Krylov subspace and it can be written as a linear combination of the columns of the matrix V,

$$\exists \mathbf{r}_0 \in \mathbb{R}^q : \mathbf{A}^{-1}\mathbf{b} = \mathbf{V}\mathbf{r}_0$$

Therefore,

$$\begin{pmatrix} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \end{pmatrix}^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{b} = \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{-1} \right) \mathbf{b}$$
$$= \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \mathbf{r}_{0}$$
$$= \mathbf{r}_{0}$$

Krylov Methods in MOR With this, m_{r0} becomes

$$m_{r0} = \mathbf{c}^{\mathsf{T}} \mathbf{V} \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{b} = \mathbf{c}^{\mathsf{T}} \mathbf{V} \mathbf{r}_{0} = \mathbf{c}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{b} = m_{0}$$

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\begin{pmatrix} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \end{pmatrix}^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V} \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \left(\mathbf{W}^{\mathsf{T}} \mathbf{b} \right) = \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V} \mathbf{r}_{0}$$
$$= \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{A}^{-1} \mathbf{b}$$

and the fact that $A^{-1}EA^{-1}b$ is also in the Krylov subspace can be written as $A^{-1}EA^{-1}b=Vr_1$

For the next moment (first moment) consider the following result:

Thus,

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\left(\mathbf{W}^{\mathsf{T}}\mathbf{A}\mathbf{V}\right)^{-1}\mathbf{W}^{\mathsf{T}}\left(\mathbf{A}\mathbf{A}^{-1}\right)\mathbf{E}\mathbf{A}^{-1}\mathbf{b} = \left(\mathbf{W}^{\mathsf{T}}\mathbf{A}\mathbf{V}\right)^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{A}\mathbf{V}\mathbf{r}_{1}$$

Thus,

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{-1} \right) \mathbf{E} \mathbf{A}^{-1} \mathbf{b} = \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \mathbf{r}_{1}$$
$$= \mathbf{r}_{1}$$

Thus,

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\begin{pmatrix} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \end{pmatrix}^{-1} \mathbf{W}^{\mathsf{T}} (\mathbf{A} \mathbf{A}^{-1}) \mathbf{E} \mathbf{A}^{-1} \mathbf{b} = \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \mathbf{r}_{1}$$
$$= \mathbf{r}_{1}$$

$$m_{r1} = \mathbf{c}^{\mathsf{T}} \mathbf{V} \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V} \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{b}$$

<ロ > < 団 > < 巨 > < 巨 > < 巨 > 三 の < で 12/20

Thus,

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\begin{pmatrix} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \end{pmatrix}^{-1} \mathbf{W}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{-1} \right) \mathbf{E} \mathbf{A}^{-1} \mathbf{b} = \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \mathbf{r}_{1}$$
$$= \mathbf{r}_{1}$$

$$m_{r1} = \mathbf{c}^{\mathsf{T}} \mathbf{V} \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V} \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{b}$$
$$= \mathbf{c}^{\mathsf{T}} \mathbf{V} \mathbf{r}_{1} = \mathbf{c}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{E} \mathbf{A}^{-1} \mathbf{b}$$

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 4 三 か 4 で
12 / 20

Thus,

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

$$\left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{-1} \right) \mathbf{E} \mathbf{A}^{-1} \mathbf{b} = \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \mathbf{r}_{1}$$
$$= \mathbf{r}_{1}$$

$$m_{r1} = \mathbf{c}^{\mathsf{T}} \mathbf{V} \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{E} \mathbf{V} \left(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V} \right)^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{b}$$
$$= \mathbf{c}^{\mathsf{T}} \mathbf{V} \mathbf{r}_{1} = \mathbf{c}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{E} \mathbf{A}^{-1} \mathbf{b}$$
$$= m_{1}$$

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 4 三 か 4 で
12 / 20

Remarks 2

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods Orthogonalization Stopping Criteria

- For the second moment, the results of first moment can be used and the fact that $(\mathbf{A}^{-1}\mathbf{E})^2 \mathbf{A}^{-1}\mathbf{b}$ can be written as a linear combination of columns of matrix \mathbf{V}
- The proof can be continued by repeating these steps (Induction) until $m_{r(q-1)} = m_{(q-1)}$ i.e. q moments match.
- The method discussed above was one-sided as we did not go for computing W. Usually, W = V is chosen
- In two-sided method W is chosen to be the basis of output Krylov subspace, then 2q moments can be matched.
- Proof is similar for matching Markov parameters and the MIMO case [3,4].

Issues with Krylov Methods

in

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods

Orthogonalization Stopping Criteria Major issues with Krylov Subspace based MOR Methods:

- 1 Orthogonalization
- 2 Stopping Point of Iterative Scheme

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods

Orthogonalization

Stopping Criteria The Krylov vectors are known to lose independence readily and tend to align towards the dominant vector, even for moderate values of n and q.

- Introduction
- Moments & Markov Parameters
- Krylov Subspace
- Moment Matching
- Issues with Krylov Methods
- Orthogonalization Stopping
- Stopping Criteria

- The Krylov vectors are known to lose independence readily and tend to align towards the dominant vector, even for moderate values of n and q.
- The remedy lies in constructing an *orthogonal* basis using Gram-Schmidt process.

- Introduction
- Moments & Markov Parameters
- Krylov Subspace
- Moment Matching
- lssues with Krylov Methods
- Orthogonalization
- Stopping Criteria

- The Krylov vectors are known to lose independence readily and tend to align towards the dominant vector, even for moderate values of n and q.
- The remedy lies in constructing an *orthogonal* basis using Gram-Schmidt process.
- However, classical GS is also known to be unstable

- Introduction
- Moments & Markov Parameters
- Krylov Subspace
- Moment Matching
- Issues with Krylov Methods
- Orthogonalization
- Stopping Criteria

- The Krylov vectors are known to lose independence readily and tend to align towards the dominant vector, even for moderate values of n and q.
- The remedy lies in constructing an *orthogonal* basis using Gram-Schmidt process.
- \blacksquare However, classical GS is also known to be unstable
- \blacksquare Go for Modified GS methods —

- Introduction
- Moments & Markov Parameters
- Krylov Subspace
- Moment Matching
- lssues with Krylov Methods
- Orthogonalization Stopping

- The Krylov vectors are known to lose independence readily and tend to align towards the dominant vector, even for moderate values of n and q.
- The remedy lies in constructing an *orthogonal* basis using Gram-Schmidt process.
- However, classical GS is also known to be unstable
- Go for Modified GS methods Arnoldi (Unsymmetric A)

Krylov Methods in MOR

- Introduction
- Moments & Markov Parameters
- Krylov Subspace
- Moment Matching
- lssues with Krylov Methods
- Orthogonalization Stopping

- moderate values of n and q.
 The remedy lies in constructing an *orthogonal* basis using Gram-Schmidt process.
- \blacksquare However, classical GS is also known to be unstable
- \blacksquare Go for Modified GS methods
 - Arnoldi (Unsymmetric A) / Lanczos (Symmetric A)

The Krylov vectors are known to lose independence readily

and tend to align towards the dominant vector, even for

Arnoldi Algorithm

Using Modified Gram-Schmidt Orthogonalization

Krylov Methods in MOR

Algorithm 1 Arnoldi

- 1: Start: Choose initial starting vector $\mathbf{b}, \mathbf{v} = \frac{\mathbf{b}}{\|\mathbf{b}\|}$
- 2: Calculate the next vector: $\hat{\mathbf{v}}_i = \mathbf{A}\mathbf{v}_{i-1}$ Orthogonalization:
- 3: for j = 1 to i 1 do
- 4: $\mathbf{h} = \hat{\mathbf{v}}_i^{\mathsf{T}} \mathbf{v}_j, \ \hat{\mathbf{v}}_i = \hat{\mathbf{v}}_i \mathbf{h} \mathbf{v}_j$ Normalization:

5: i-th column of
$$\mathbf{V}$$
 is $\mathbf{v}_i = \frac{\hat{\mathbf{v}}_i}{\|\hat{\mathbf{v}}_i\|}$ stop if $\hat{\mathbf{v}}_i = 0$

6: end for

Output of Arnoldi Iteration:

- 1 Orthonormal Projection matrix V,
- **2** Hessenberg Matrix $\mathbf{H} = \mathbf{V}^{\mathsf{T}} \mathbf{A} \mathbf{V}$
- < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods

Orthogonalization

Stopping Criteria

Stopping Criterion

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

lssues with Krylov Methods

Orthogonalization

Stopping Criteria

- When to stop the iterative scheme? is another question to be answered
- This also decides the size of the ROM
- TU-M: Singular values based stopping criterion.¹
- IIT-D: A more efficient criterion based on a index known as CNRI² is proposed.³

¹B. Salimbahrami and Lohmann, B., "Stopping Criterion in Order Reduction of Large Scale Systems Using Krylov Subspace Methods", Proc. Appl. Math. Mech., 4: 682–683, 2004.

²Coefficent of Numerical Rank Improvement

³M. A. Bazaz, M. Nabi and S. Janardhanan. "A stopping criterion for Krylov-subspace based model order reduction techniques". Proc. Int. Conf. Modelling, Identification & Control (ICMIC), pp. 921 - 925, 2012 ∽ ...

Comparison with Balanced Truncation

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

lssues with Krylov Methods

Orthogonalization

Stopping Criteria

Parameter	BT	Krylov
No. of Flops	$\mathcal{O}\left(n^3 ight)$	$\mathcal{O}\left(q^2n\right)$
Numerical Reliability for large n	No	Yes
Accuracy of the reduced system	More Accurate	Less Accurate
Range of Applicability	$\sim 10^{3}$	$\sim 10^4$ or higher
Stability Preservation	Yes	No
Iterative Method	No	Yes
Reliable Stopping Criterion	Yes	No*

Selected References

- Introduction
- Moments & Markov Parameters
- Krylov Subspace
- Moment Matching
- lssues with Krylov Methods
- Orthogonalization
- Stopping Criteria

- **1** A. C. Antoulas, Approximation of Large Scale Dynamical Systems, *SIAM*, 2005.
- 2 Behnam Salimbehrami, Structure Preserving Order Reduction of Large Scale Second Order Models, PhD Thesis, TU Munich, 2005.
- **3** Rudy Eid, Time Domain Model Reduction By Moment Matching, PhD Thesis, TU Munich, 2008.
- B. Salimbehrami, Boris Lohmann, Krylov Subspace Methods in Linear Model Order Reduction: Introduction and Invariance Properties. Scientific Report, Univ. of Bremen, 2002.
- Zhaojun Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, *Applied Numerical Mathematics*, 43 (2002), pp 9-44.

Krylov Methods in MOR

Introduction

Moments & Markov Parameters

Krylov Subspace

Moment Matching

Issues with Krylov Methods

Orthogonalization

Stopping Criteria

Thanks!

