DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

SOUTHEAST UNIVERSITY

CSE400: Research Methodology
Mad Dash Car Crash

A dissertation submitted to the Southeast University in partial fulfillment of the
requirements for the degree of B. Sc. in Computer Science & Engineering

Submitted by

Md Abdul Kader
ID: 2009100000014

Supervised by

Monirul Hasan
Lecturer and Coordinator,
Department of CSE
Southeast University

Copyright(©)2015 Southeast University
August, 2015

Letter of Transmittal

September 5, 2015

The Chairman,

Department of Computer Science & Engineering,
Southeast University,

Banani, Dhaka.

Through: Supervisor, Monirul Hasan
Subject: Submission of Research Paper

Sir,

[am pleased to submit here my Research Paper of Mad Dash Car Crash. It was
a great pleasure to work under your guideline. I have tried to work hard and
accomplish your desire. I am grateful to my supervisor for continuous guideline
to complete the work.

Thank you.

Sincerely yours, Supervisor:

Md Abdul Kader Monirul Hasan

ID: 2009100000014 Lecturer and Coordinator,
Batch: 22 Program: CSE Department of CSE

Southeast University

Certificate

This is to certify that the research paper titled ‘Mad Dash Car Crash’ is the
bona-fide record of research work done by Md. Abdul Kader for the partial ful-
fillment of the requirements for B.Sc. in Computer Science & Engineering (CSE)
from Southeast University.

This paper was carried out under my supervision and is record of the bona-
fide work carried out successfully.

Author: Approved by the Supervisor:
Md Abdul Kader Monirul Hasan

ID: 2009100000014 Lecturer and Coordinator,
Batch: 22 Program: CSE Department of CSE

Southeast University

Abstract

Mad Dash Car Crash is a 3D car race fighting video games build on C++4 platform.
It is a cross platform video games with a low graphics card requirement. The
game has modern car racing features with additional car fighting features. Player
can choose and upgrade their car in a attractive car choosing menu. No extra
game engine has been used in the development of the game. The game is fully
built in scratch and help with some fine tools like OpenGL libraries and Blender
Model creator. Most attractive part of the game is the applied physics in the car

that bring the car like real simulation.

Acknowledgements

I would like to express my special thanks of gratitude to my supervisor Monirul
Hasan, Lecturer and Coordinator, Dept. of CSE for guiding me throughout the
research CSE: 400. Research itself helped me quite a lot in building up the
fundamental knowledge of the field. I would like to thank the Department of
CSE for allowing me to work on this program. I would also like to thank my

parents who helped me a lot in finishing this research within the limited time.

i

Contents

[Abstractl

[Acknowledgements|

[List of Figures|

(1 _Introduction|

[2

Background Study|

[2.1 Car Racing/ Motor Racing]

P11

Formula 1 Racingf

pI12

Touring Car Racing|.

13

oport Car Racing

P14

Production Car Racing

[2.1.5

One Make or One Model Racing|.

[2.1.6

Stock Car Racing]

2.1.7

Rallies)

P18

Off Road Racingl

[2.1.9

Drag Racing|.

[2.2

Racing Video Game]

[2.3

Car Fighting Video Games|

[2.4

Game Engines|

AT

Components of the Modern Game Engine]

ii

vi

co =N N oot »m

il

CONTENTS

[B_Probleml

[3.1 Position Findingl

Implementation|

.1 OpenGL (Open Graphics Library)|.

4.2 GLEW (OpenGL Extension Wrangler)[.

4.3 SDL (Simple DirectMedia Layer)|

4.4 Assimp (Open Asset Import Library)|

(5.1 Implementing the A* algorithm|

[5.2 Pathfinding algorithm for random obstacles avoidance|.

24
27
27
28
29
29

31
32
32
33
35
37
38
38
39
39
40
40
41
41
43
44
44

46
46
47

49
49

v

CONTENTS

[References]

51

List of Figures

(2.1 Formula One Racing Car [I|

2.2 Touring Racing Car 2|

2.3 Sport Racing Car 3]

2.4 Production Racing Car [3]

2.5 One Make Racing Car 4.

[2.6 Stock Racing Car [II|

2.7 Rallies Racing Car 2]|.

2.8 Off Road Racing Car |4

2.9 Drag Racing Car [3]]

[2.10 Need for Speed: No Limits {5 |.

2.11 Mad Max Video Games[6] |

[3.1 Physics algorithm Code |

[3.2 Position Finding |

[3.3 Physics algorithm Code |

vi

Chapter 1

Introduction

Mad Dash Car Crash is a 3D genre car racing tournament video games. With
having traditional car racing tournament feature, the game has its own car fight-
ing mode that will give the gamer flavour of a fighting games. The game has also
on playing point collection features like power-ups games. We can choose or buy
different cars on the base of power ups points gathered. Also we can upgrade
a car with different amination and filled with grenades that can be used during
the race to demolish other racers car. Artificial intelligence applied on enemy car
give real racing environment on the game. The game is build on C++ platform
with no additional game engines included. It support cross-platform, or multi-
platform systems and run on as many as almost all existing platforms. It is a
third person perspective game, but user can switch to first person mode while
playing the game. Having both perspective features gamer will able to feel the
real car simulation flavour from first person perspective mode and fighting effect
with the third person perspective mode. The game plot has been created on a
story. This story will help the readers better understand of the game rules and

features.

Near Sunaristo there is an Island name ‘MadLand’. Its also named as ‘Prison
Of MadLand’. One side of the Island is surrounded by the lake full of large deadly

crocodiles. On the other side of the Island is covered by a dark forest with fiercest

CHAPTER 1. INTRODUCTION

creatures beasts.

The beasts of the forest are dominated by the evil forces. Elder citizens of the
Island are all long gone. The beasts tooks the weakest first. They need to sacrifice
those body for the evil force. There is only gate to get rid of this Island. The gate
is gquarded with five evil force. No one has ever returned alive those who tried to

get out off this Island.

A Mad King name ‘Rafa’ is the ruler of this land. But he is well known as
the ‘Mad King’. He worship the Evil God ‘Arikonus’ for black magic and control
a force of evil race. He has also control over the natural force of water and fire.

He sacrifice his only son to the Evil God to gain this power.

The Mad King has a racing car factory. The peoples of MadLand forcibly work
i his car factory. He build this car factory to feed his evil force and get resource
for his worship and make strength to become a Dark Lord. The Mad King is so
much ruthless that those who go against his command, he put them in one of his
testing car from factory without any breaks and force them in a race and lose the
evil forces behind them. Somehow those who managed to save from car, the evil

force rips them apart and take their sole.

Once he decided to arrange a car race competition every year in the MadLand.
The one who will win the race can get out of this MadLand with huge amount of
precious jewelries and golds. But the path of the race is deadly by itself. There
15 only one rule to survive in the race and win freedom is to kill all other racers.
For the last 10 years no one has ever succeeded alive till the end. But the race

coverage become popular as planned all over the world. King named the race ‘Mad

Dash Car Crash’.

CHAPTER 1. INTRODUCTION

The race begins with a minimum number of 8 racers. FEvery racers can choose
and decorate his racing cars with the rules and availability of equipment with level
and experience. The race will held constantly every day till the last racers alive.
Fvery single day racers have to finish up 5 laps through the tracks. FEveryday
tracks changed and racers get new levels with new armours. Points will be dis-
tributed amongst the racers according to their health and position every time after
single day race finished. Racers can acquire points in many other ways from the
race. Damaging other cars will gather most of the points. By destroying a rac-
ers car will double his armour in the car. A desperate scramble attempt or Mad
Dash is the key to win the race. Every the race will begin with the last day left
alive racers. FEach level up or day change will make much more harder to survive.
Those who catch the first opportunity to kill the first blood will be strongest first.
But there is always will be less strong for the three racers combination. No mat-
ter how stronger or multiplied stronger a racers is three racers combination will

always took him down.

By following in the next chapter we will learn some of the racing car games
and car fighting games description as Background Study. Specifically, I try to in-
troduce the reader if they don‘t know about racing games or car fighting games,
what is racing games how many types and varieties in racing games. Gives some
understand of real car racing tournaments all over the world and kind or play-
ing rules of them. On following I discussed about some famous 3D car racing
games. Gives some list of car racing games and some short description about
them. After on some car fighting famous games and their playing way has been
discussed in this section. Also need of game engine in the games and physics for
developing has been discussed in this chapter. Overall I tried to discuss about
what sort of knowledge need to develop and understand for this games has been
discussed in this background study chapter. In Chapter 3 we will learn about

the game features and front end description. Arising problems for developing the

CHAPTER 1. INTRODUCTION

game and the possible solution of the problem has been discussed in this chapter.
The code implementation and tools needed for this games has been discussed in
the Chapter 4 Implementation. The basic IDE and framework for developing the
game or use to code is discussed. Following what sort of libraries or resources for
implementing the code further and what their properties has been discussed in
this chapter. In the last result Chapter 5 will talk about the outcomes and visual
outputs of the game. We will possibly find more information useful after reading

this following chapters.

Chapter 2

Background Study

From the beginning of time there always remains a racing intention in every living
things. Some race to live some race for life and some race for hobby. Centuries

to centuries the word made the racing words on its way to various sports.

The history of racing is always remains unique amongst all sports. The basic
concept of racing is always- get from one point to another point before any com-
petitor does. Unlike other sports it provides one with so many opportunities to

enjoy the sport.

2.1 Car Racing/ Motor Racing

Car racing/ motor racing is also known as auto racing/ automobile racing in the
racing world. In the car racing/ automobile competitions the main aim is to set
out the fastest time in a set number of laps or provided time limit. Finishing with
the fastest time lapse determined to be win as in the first place, second-fastest
in second place and so on. There are numerous types of auto racing could be
founded where each has its own different adjusted rules, for all cars and drivers

to comply.

CHAPTER 2. BACKGROUND STUDY

Car racing can be differentiates by car and location. Some are listed here [7]:
e Dirt track racing
e Kart racing
e Midget car racing
e Monster trucks
e Open wheel racing
e Rally racing
e Solar car racing
e Touring car racing

e Tractor pulling

According to my research, I categorized the car racing according to the popu-
larity and category of cars, their performance, and the tracks where the race is

conducted. Some of the various types of races are listed below [§]:
e Formula 1 Racing
e Touring Car Racing
e Sport Car Racing
e Production Car Racing
e One Make or One Model Racing
e Stock Car Racing
e Rallies
e Off Road Racing

e Drag Racing

CHAPTER 2. BACKGROUND STUDY

Figure 2.1: Formula One Racing Car [I]

2.1.1 Formula 1 Racing

Formula One race or F1 race or Grand Prix is determined as the highest class of
single-seat auto racing sanctioned according by the Federation Internationale de
1‘Automobile (FIA). It is mainly part of the formula racing, which has almost 300
different category and F1 or Formula one comes first on them. The race consists
a series of races conducted by Grand Prix throughout the world on their purpose-
built F1 circuits and public roads [7]. The race named after formula because of
its all sets of rules that must perform by the racers. The cars of Formula One
race follow at speeds of up to 360 km/h (220 mph) with their engines currently
is limited in performance approximate to a maximum of 15,000 RPM. Although
the cars are a lot capable of lateral acceleration. The performance of the cars
is very much dependent on electronics. The formula has radically evolved and

changed through the history of the sport.

2.1.2 Touring Car Racing

Touring Car Racing is another popular form of racing that conducted among

different car companies with heavily modified road-going cars. This types of

CHAPTER 2. BACKGROUND STUDY

P

P

Breathe in. Move on.

Figure 2.2: Touring Racing Car [2]

forms are mostly popular in in Argentina, Australia, Brazil, Britain, Germany,
Sweden and Norway. Touring car racing competition rules vary from country to

country. Some touring car competitions names given here [9],

e World Touring Car Championship (Worldwide)

British Touring Car Championship (United Kingdom)

DTM (Germany/Europe)

Nurburgring VLN Endurance racing Series (Germany)

Scandinavian Touring Car Championship (Sweden/Denmark)

V8 Supercars (Australia and New Zealand)

2.1.3 Sport Car Racing

Sport car racing are two seats and enclosed wheels racing which have the famil-
iarity with touring car racing that may propose to go road going cars. This car
racing style often defined as hybrid of touring car racing and the annual Le Mans
24 Hours endurance race. It is one of the oldest form of motor car racing compe-
tition include the Italian classics, the Targa Florio (1906 1977) and Mille Miglia

(1927 1957), and the Mexican Carrera Panamericana (1950 1954). This type of

8

CHAPTER 2. BACKGROUND STUDY

- 5 pﬁriﬂlpluy‘r

ﬂl’ —_‘-_

u ‘__._———- —-’a_";*.ENTAL

Figure 2.3: Sport Racing Car [3]

races usually emphasize endurance, pure speed, reliability, complex pit strategy

and regular driver changes [10].

2.1.4 Production Car Racing

nmu;" a‘i- "l ! 14,

sppees

s warwrars &% O 3
(]
LD cMRTL L ESTOn, 'v':----- Ty

',"" b BRIDGESTODNe
. ‘R L E R L K
L/
[1]
.

»

///?/ﬂ&'f_s‘]'a” -

m

¥
e

. -B26RJ*

Figure 2.4: Production Racing Car [3]

Production car racing is another one of the form of racing where all cars are
unmodified (or very lightly modified) cars race each other in consequence, outright

and also in categorized in classes. This form of racing is also identified as one of

CHAPTER 2. BACKGROUND STUDY

the economical forms of racing to increase the popularity of the production cars
amongst the speed car lovers. Production car racing also known differently in
the US where they named as showroom stock racing. This form of racing occurs
as an economical racing thus its rules are in some of restricted version of touring

car racing, mainly to restrict costs.

2.1.5 One Make or One Model Racing

Figure 2.5: One Make Racing Car [4]

Thomas Middleton of the Shankill Corinthian Club first came up with the
idea of one-make design idea at south of Dublin, Ireland in the year 1887. One
make racing form are conducted between number of same type of cars which
are manufactured by the same make or company. Hence this form of racing is
known as one make racing because of its adopted in sports which use complex
equipment, whereby all vehicles, gliders or boats have identical or very similar
designs or models. There races are also conducted in separate tracks made for
them. The important factors being measured in one make racing help to equalize
the vehicles heavily used in sailboat racing and put more emphasis on the skill
of the competitors. One-Design racing also refers two primary methods of com-
petition in sailboat racing. The first boat to finish wins the race is the only rules

of One-Design racing for sailboat racing. There was some attempts of bringing

10

CHAPTER 2. BACKGROUND STUDY

the sport of competitive glider racing with the advantages of one-design. Paul A

Schweizer principal of Schweizer Aircraft on One-Design concept he wrote:

‘The true measure of pilot ability and experience is usually shown by his final
standing in a contest. What could be more indicative of this when pilots are fly-
ing identical sailplanes with identical performance. One-design competition is the

sure test of soaring skill[11].’

2.1.6 Stock Car Racing

Figure 2.6: Stock Racing Car [I]

Stock car racing is a type of racing which involves the usage of purposely build
race cars either they may wrecked or crashed cars and old cars are run on oval
tracks measuring approximately 0.25 to 2.66 miles (0.4 to 4.3 kilometers) with
average speeds in the top classes are usually 70—80% at the same tracks. These
cars are thus altered and then used for racing. Hence this type of racing is known
as stock car racing. Stock car racing found mainly in the United States, Canada,
New Zealand, Australia, United Kingdom, Mexico, Brazil and Argentina. The
idea of stock car racing firstly come from production car racing with factory build

cars, but later it has been differentiate in different ideas and configurations. Stock

11

CHAPTER 2. BACKGROUND STUDY

car racing has been differentiates in some class each with slightly different rules
but with near-identical specifications that look like production cars. Some of the

classes are,
e Street Stock / Pure Stock
e Super Stock
e Late Model

e Crossover drivers

2.1.7 Rallies

Figure 2.7: Rallies Racing Car [2]

Rally is another one of the most important form of racing of cars where there
are races which consist of usage of off road tracks and on road tracks. The cars
used in this type of racing are production based cars. This type races are held
more than two days. This motorsport is distinguished by running not on a circuit,
but instead in a point-to-point format in which participants and their co-drivers
drive between set control points, leaving at regular intervals from one or more

start points.

12

CHAPTER 2. BACKGROUND STUDY

Figure 2.8: Off Road Racing Car [4]

2.1.8 Off Road Racing

Off road racing is one of the form of racing in cars where the name itself indicates
that this type of racing is conducted in off road tracks. Where the cars used
in this type of racing may be either production cars or modified cars such as

specially modified vehicles (including cars, trucks, motorcycles, and buggies).
e Desert Racing, North America (Mexican desert)

e Short Course Racing, North America (Midwestern United States)

2.1.9 Drag Racing

Drags racing of cars are the most predominant type of racing. Where this type
of racing involves the performance of unique type of stunt called dragging. This
type racing is performed only for shorter distance. Cars used in this type of racing
are purposely built cars. Hence these are some of the types of racing involved in

cars. Some popular drags racing organization are,
e National Hot Rod Association (NHRA), North America
e Australian National Drag Racing Association (ANDRA), Australia
e New Zealand Hot Rod Association (NZHRA), New Zealand

e Curacao Autosport Foundation (FAC), Curacao

13

CHAPTER 2. BACKGROUND STUDY

Figure 2.9: Drag Racing Car [3]

e ADRL, QATAR MILE, NATIONAL STREET DRAG CHAMPIONSHIP,
QATAR DRIFT CHAMPIONSHIP, FREESTYLE DRIFT and SEALINE
SAND DRAGS, Middle East

e Tarlton International Raceway and ODI Raceway, South Africa

2.2 Racing Video Game

Racing video game are one of most popular form of genre video games [12] in the
gaming world. Most of the racing video games are either built in the first-person
or third-person perspective mode, in which the player takes part in a racing com-
petition with any type of environment like land, air, or sea vehicles. It may also
be categorised under the the category of sports games due to its popularity and

simulation skill.

At the beginning of racing video games they were usually only played as an ar-
cade games. Arcade games are sort of like coined games, mainly a coin-operated
entertainment machine is played as arcade game that installed in public busi-
nesses, such as restaurants, bars, and particularly amusement arcades. With the

revolution of changing from 2D video games to 3D video games this arcade games

14

CHAPTER 2. BACKGROUND STUDY

were played a role amongst all around the gamers of the world.

According to the google trend Need for Speed is the most searched and played
video games around the world which is also known by its initials NF'S published
by Electronic Arts (EA) and has been developed by several studios around the
world including the Canadian and the British companies. Need for Speed games
has been developed by Distinctive Software video game studio based in Vancou-
ver, Canada. According to gamers world website Need for Speed is the most
successful racing video game series in the world, and one of the most successful
video game franchises of all time. In the game player controls a race car in a va-
riety of races to win the race. Player can change or choose a vehicles and tracks

and can play as either in the mode of tournament or career mode.

Figure 2.10: Need for Speed: No Limits [5]

List of Need For Speed Video Games: [10]
e The Need for Speed (1996)

e Need for Speed II (1997)

Need for Speed III: Hot Pursuit (1998)

Need for Speed: High Stakes (1999)

Need for Speed: Porsche Unleashed (2000)

15

Need for Speed

Need for Speed:
Need for Speed:
Need for Speed:
Need for Speed:
Need for Speed:
Need for Speed:
Need for Speed:
Need for Speed:
Need for Speed:
Need for Speed:

Need for Speed:

Need for Speed

CHAPTER 2. BACKGROUND STUDY

Hot Pursuit 2 (2002)
Underground (2003)
Underground 2 (2004)
Underground Rivals (2005)
Most Wanted (2005)
Carbon (2006)
ProStreet (2007)
Undercover (2008)
Shift (2009)

Nitro (2009)

World (2010)

Nitro-X (2010)

Hot Pursuit (2010)

Shift 2: Unleashed (2011)

Need for Speed:

Need for Speed:

The Run (2011)

Most Wanted (2012)

Need for Speed Rivals (2013)

Need for Speed:

No Limits (2015)

Need for Speed (2015)

2.3 Car Fighting Video Games

Car fighting video games are mostly played as video games where the primary ob-
jectives of the players gameplay includes cars, usually armed with various machine
guns, missiles, molotov cocktails, pipe bombs, hand grenades, and other prepared
weapons, attempting to destroy the other vehicles in the game controlled by the

CPU or by opposing another user played in multiplayer mode. Each of them

16

CHAPTER 2. BACKGROUND STUDY

Figure 2.11: Mad Max Video Games[0]

can differently choose cars with its own strengths, damage modes, and special
attacking features. There is also some features where the players may also able
to unlock the hidden cars by finishing certain levels and in-game tasks. Most
of the car fighting games follow certain common rule of patterns. The player
must defeat increasing numbers enemies with increasingly skilled. Often have
to defeat in increasingly complex battlefields, before facing off against a final,

super-powerful, boss character. Some car fighting games are listed here,
e Mad Max (2015)
e Auto Assault (2006)
e Armageddon Riders (2011)
e Blood Drive (2010)
e Carmageddon series (1997, 1998, 2014)
e DiRT: Showdown (2012)
e FlatOut series (2004, 2006, 2007)
e Full Auto (2006)
e Knight Rider (1989, 1990)
e Need for Speed: Hot Pursuit (2010)

e Rage (2011)

17

CHAPTER 2. BACKGROUND STUDY

e San Francisco Rush 2049 (1999, 2000)
e Vigilante 8 (1998)

e Zombie Driver (2009)

2.4 Game Engines

Game engines are usually build to make easier everything in the process of game
development. FEvery game engine have their own unique features of developing
in gaming process. But generally they have only main purpose in building game
engine is to provide easy abstraction layers for graphics, audio, input, scene man-
agement, collision detection, maths and general useful utilities for developing a
game. Some game engines provide with wrappers and some plugins for physics
APIs. Some even have some Al support (mostly limited to algorithms like as
FSMs, pathfinding and with the current trend behaviour of trees).Most of the

game engines support and pride themselves, on cross-platform functionality.

Usually game engine is a framework which provides the facilitates and the kinds
of tasks which helps in the process at the time of writing a game. So the question
is, what are the kinds of tasks we want to do? We want to display images on
the screen in game terminology which is to be displayed on the screen is called
a sprite. We always may need to draw some of menus or text on the screen of
game window. Thus we want to organise all of our sprites so that some are not
left behind. Some games use realistic physic maths that so objects collide or fall

with gravity, which creates real simulation.

Purpose of a game engine’s is to make the life of game developer a lot easier
to create a game, without having any shorts of hazards in creating a game from
scratch in a small amount games. It also helps from installing a whole bunch of

libraries and writing on development of our own wrappers for them to suit in our

18

CHAPTER 2. BACKGROUND STUDY

game.

A lot of game engines are out there already in handy, but beware of some signif-
icant difference between a graphics engine and a games engine (For as example,

Unity 3D is a games engine, whereas Ogre is a graphics engine).

2.4.1 Components of the Modern Game Engine

It is true that game engines are interconnecting parts or elements sets of com-
ponents which provide a lot of useful features in the process of making games.
Unlike any other general purpose development frameworks, like Cocoa Touch or
NET games, game engines are made specifically for developing games and give
all of other components organized to the detriment of other forms of applications.
To compensate for the lacking it is easy tools for building menu bars and widgets,
game engines have graphics engines optimized it so that to be as fast as possi-
ble and instead of using default popup windows and system sounds they contain

sound engines which place sounds in 3D space.

Input

One of the most important aspects of a game is the means to play it, so game en-
gines are usually support an array of input types like, keyboard, mouse, gamepad
and touch with less-common input methods like, joystick, steering wheel, roller-
ball, multi-touch for being subsets thereof. There are many different ways to
handle this type of input events, but there are two common means: events and

polling.

Input events only work by the computer input type like, mouse button pressed,
keyboard key released, joystick axis changed, touch pressed events for triggering
our custom code. It combined with a mapping table, which will connect keyboard,

controller or mouse buttons to named as actions, such as to jump or shoot, so

19

CHAPTER 2. BACKGROUND STUDY

that we can develop our code without having worry about the user layout than

the one we build our game around.

Polling is called position values which usually as the x/y coordinates of the mouse
or the amount of tilt of a gamepad’s analog stick. Game engine provides the op-
tions and help to retrieve these values whenever the developer wants to react to

changes in these values.

Graphics

As explained above, game engines provide assistance in the rendering sprites to
the screen. It’s not efficient to just load images into our game one by one, it re-
quires more effect on it. The idea is to put all our images onto a big image sheet
and then load it as one image. When we need one of the images it can be cropped
from the sheet. For developing complex games it is difficult to implement from
scratch but in a good game engine like Cocos2D or LibGDX|[13] it’s simplifies the
work for us. They also allow us to create frame by frame animations from these
sprite sheets. If we want to make our character walk we can provide images of the
character in all the stages of walking. The game engine can then loop through

these images to create a walking animation.

Game engines also provide more complex features as described below [6]:

LibGDX game engine for Android, provide completely shields the knowledge how
the graphics are implemented. It helps in using it during development of our
game run it as a native Windows or OSX program on our computer for avoiding

the slow buggy Android emulator.
Game engines also provide help with animations like Cocos2D which proves a

number actions like CCMoveTo and CCFadeOut. We can create an action which

will send our sprite from one location to a different location in a specified amount

20

CHAPTER 2. BACKGROUND STUDY

of time or to fade out our image. We can also create a sequence of actions to be
executed one after the other. This saves us having to write our own classes to

update the object‘s position every frame.

Game engines also help we organise our game. We can create scenes which con-
tain layers. Each level can be represented by one scene and the background can
be on a different layer to our player. This helps to keep our game organised and

reduced the complexity of the code.

Sound

Another game engine features of the audio engine which consists of any algo-
rithms related to sound. It can calculate process things quickly on the CPU, or
on dedicated ASIC. SOme of the APIs, such as e.g. OpenAL, SDL audio, XAudio

2, etc. are available with the sound engines features.

Games sound effects don’t usually just come out of our speakers. They were
recorded, but most game engines have the opportunities to place sounds inside
the 3D world of the game which will modify the volume depending on where our
character is relative to the sound. There are also a lot of ways to make sound’s
realistic by adding pitch or modulation and reverberation to make it seems like
the sound is bouncing off the walls of its surroundings. As example, the sound
of clashing swords in a open ground versus down in the depths of a dungeon and
how it reflect the world around them makes some difference in the sound quality.

This type of things are now handled gently by the sound engines.

Physics

All good game engines come with physics built in. Physic is a term which covers
a wide variety of functions including: detecting collisions, applying forces and ve-

locity to objects. By using some of a physics engine we can define our shapes and

21

CHAPTER 2. BACKGROUND STUDY

wait watch them respond like real world shapes would. Game angry birds most
of the features relies almost entirely on physics for it’s game play. Physics engine
will help us to know when a grenade or bullet hits our players car. It can also
create some of a wobbly bridge or a water effect in the game. After sorting these
things out we are going to face very difficult and would require a minimum of a
degree in Maths of Physics. But by using a pre-made, free, physics engine we can
get a straight way into creating our game. In my research the best physics engine
I have found is Box2D. It’s very powerful and has implementations for iPhone
and Android both and is included in all the best game engines. The benefit of
using a very popular cross platform engine like Box2D from Android to iOS we

don’t need to re-learn how to use the physics engine!

Some basic ideas of related works needs to be understood for that physics isn’t
all over an integral part of rendering a 3D gaming worlds, despite in the modern
game engines combine this two with the end-user where developer doesn’t have
to be aware of the distinction. When we try to render a straight cube in a game,
sometime it’s just only a simple visual effect, perhaps it is combined with light
refraction and bumped maps to give it a good sense that it is really very much
existed in the world, but there is nothing to be inherent in the cube which says
that it has to be maintained according to physical laws. For games, physics needs
to be developed to the cube for as it to react to gravity sense or being pushed or
shot effect understanding by the user. While giving the cube a physical shapes,
which may not be exact the same as the visual shape creates, as well as mass,
friction, bounciness and other properties that is been used to create an object

which can interact with the world around it.

It is too much costly in handling the physics process, but also only adding some of

physical bodies to the objects is not that need to react, as well as making of their

physical shape will be less complicated than the visual one. Thus its a simple

22

CHAPTER 2. BACKGROUND STUDY

way to make the games run more faster then ever. This is the reason why in the
game we can slide along a row of trees without any hazard like real simulation,
even as if they were a flat wall, because of the computation that is needed to
determine all our collision with every single count of tree trunk is a waste of time
for the game when we should just going to be following the corridor rather than

exploring the whole anyway.

User Interface

If we not really being capable of building the typical user-interface of a Windows
program, with a menu bar and floating windows, game engines gives the feature
with this GUI capabilities. Every games user interface have their own custom
GUI to fit with the style of the game. So providing a standard UI isn’t really
as important as giving developers the means to build their own custom buttons,

drop-downs, sliders and such by combining textures, colors and events.

Many other different game engines handle the problem of GUI differently. Some
game engines just ignore the issue altogether as they require the developers to
build the functions manually. This isn’t exactly as that hardest thing to do, as a
GUI is pretty much just a list of text or images which can be identified for clicked

on or selected using the keyboard or gamepad.

23

Chapter 3

Problem

Mad Dash Car Crash is mainly based on genre car racing third person 3D video
games. The game is leveled based racing like tournament racing but different
from its basic idea. Every level has to be completed with a fixed leveled track
and fixed lap based on level and enemy car left. Mad Dash Car Crash is also
fighting games but the fighting mode is only based on car and amination inte-
grated with in the car. But player can choose and change the car, upgrade and
repair its damages and add different type of animation based on level, points and

position on the race.

Gamer will have the flexibility of playing either in full screen mode or window
mode. Simple car choosing mode and settings mode will give player simple under-
standing game environment within it. In this basic version single user can play
one time at a time with a fixed number of computer controlled enemy car. After
choosing car from start screen mode player will screen displaying either player’s
wants to play in tutorial mode or tournament mode. The basic version of the
game will give simple racing control features in tutorial mode. There will be no
enemy car or destruction in the tutorial mode. By choosing tournament player
can’t get back to the tutorial mode after starting. If gamer exits in the middle of
the tournament he or she will lose the game. After starting the game player must

complete all the level in a consecutive sequence. Any short of termination in this

24

CHAPTER 3. PROBLEM

mean time will cause lose of his full afford and begin his game from the beginning.

Game environment is set on a base of island. Players have to complete the
fixed amount of lap around the island alive. During race players have to acquire
certain points from tracks during race to upgrade cars. Most of the points will
come from demolishing enemy cars. Also players only goal in the games is to de-
molish all the enemy cars. If gamers unable to demolish all the enemy cars before
the end of a level, the enemy cars and environmental enemies will grew stronger
in every upper level. So players have to acquire points to gather amination to

demolish enemy cars and in the mean time gamers have to destroy enemy cars too.

Mad Dash Car Crash is the competition of the MadLand declared by Mad
King Rafa that has been discussed in the Introduction. As for the cruel rule of
the Mad King, no one has ever able to win the competition alive. Because there
is a black minded form in the race that was always hidden from the racers. The
rule that is always unware of every racers. After destroying or killing all other
racers, the winning racer have to face the last lap race with the dark force. In this
lap after destroying all enemy car they will reveal and will try to catch us. They
will not only try to catch but also will through fire and dark magic towards the
racers. The racers have to dos those powers Racers can’t destroy the evil force.
The only way to win is to avoid those powers and cross the finish line before the

evil force destroy the racers car.

The game has a hero who will change the rules after winning the game. He
will get rid of this prison for the first time, and with the winning of the game
for the first time the evil force will be declined from getting feed. For the reason
they will get scrambled and get out of controlled of the Mad King. Mad King
will get angry and will try to imprisoned the evil force. Which will make more

scrambled amongst the evil force unity. The evil force will begin to attack the

25

CHAPTER 3. PROBLEM

Mad King. A great dark magic war will took place in the Island of MadLand.
In this situation the hero will began to imprison all the prisoners of the island
and get them safely out of the Mad Island. When all the villagers of the Island
will safely reach the shore they will see the Kingdom is falling down and blust

altogether taking with the Mad King and his Evil Force.

The starting and ending part story is not included with the basic version of
the game. It requires some animation which is been kept for the future work.
When the animation will be complete it will be included with the new version

with more extra features.

To track in which state of our car in the game we are discussing probably have

something like:

23 vec2 carLocation;

24

25 float carHeading;

26 float carSpeed, maxSpeed;

27 float steerAngle;

28 float maxSteerAngle = 45;

29 float wheelBase, minWB, maxWB;
30

31 bool plus, minus, up, down, left, right, steerLock;
32

33 vec2 frontwWheel;

34 vec2 backwWheel;

Figure 3.1: Physics algorithm Code

Physics algorithm in this game will update the carLocation and carHeading
in each frame according to the above assumptions shown in the figure, and the
input part of our game can update carSpeed and steerAngle based on the user
input hardcoded input. So to calculate the next position and heading of the car

I have broke down process in basic three steps:
e Position finding in the game world of a imaginary front and back wheels
e Wheel movement according to the current pointing direction of the wheel

e Find car next location according to wheel current location and next heading
to.

26

CHAPTER 3. PROBLEM

3.1 Position Finding

In the game I use geometry calculations to find the actual positions of the wheels
(which are at the centre of each axle). The gap between the axles is given by the
wheelBase, so each wheel is half that distance from the car centre, in the direction

that the car is facing. The following diagram shows the geometry: Applied code

.steerAngle

Figure 3.2: Position Finding

for front wheel and back wheel as shown in the picture given below:

112 frontWheel = carLocation + wheelBase/2 * vec2(cos(carHeading) , sin(carHeading));
113 backWheel = carlLocation - wheelBase/2 * vec2(cos(carHeading) , sin(carHeading));

Figure 3.3: Physics algorithm Code

3.2 Wheel Movement

Each wheel should move forward by a certain amount in the direction it is point-
ing. The distance it needs to move depends on the car speed, and the time

between frames (I'll call it dt here). The rear wheel is easy, it moves in the same

27

CHAPTER 3. PROBLEM

direction the car is heading. For the front wheel, we have to add the steer angle

to the car heading as the diagram shows: Applied code for front wheel and back

New fTront wheel — !
location P

w7 —— steerAngle

I

A
Ay

Fd
rd

7 !

/s I
e

s N
P A
s 1 .
carHeading
\ \

New rear wheel

I
I
I
I
I
I
I
I
I
I

location

Figure 3.4: Wheel Movement

wheel motion with directional movement as shown in the picture given below:

115 backWheel += carSpeed * dt * vec2(cos(carHeading) , sin(carHeading));
116 frontheel += carSpeed * dt * vec2(cos(carHeadingssteerAngle) , sin(carHeading+steerAngle));

Figure 3.5: Physics algorithm Code

3.3 Car Next Location

For finding car next location we need to find the wheels new position. For this
we calculated by averaging the two new wheel positions. Car new location need
to find where the car heading to by the steer angle. The new car heading can be
found by calculating the angle of the line between the two new wheel positions:
Applied code for car current location and where the car will next heading to

shown in the picture given below:

28

CHAPTER 3. PROBLEM

. steerfngle

Figure 3.6: Car Next Location

118 carLocation = (frontWheel + backWheel) / 2.07;|
119 carHeading = atan2(frontWheel.n[VY] - backwheel.n[vY] , frontwWheel.n[VX] - backwheel.n[VX]);

Figure 3.7: Physics algorithm Code

3.4 Car Next Location

A problem with this algorithm. It doesn’t conserve the baseline, that is, the
distance between the front and rear tire. Over time, if we move forward while
turning, the baseline will shrink down to carSpeed * dt, and the motion will
become completely unrealistic. Testing with an initial baseline of 50, carSpeed
= 50, dt = 1/60, and steerAngle = 20 degrees. By frame 500 the baseline had

shrunk down to 26.2.

3.5 Pathfinding Algorithm

For road map and moving car with that map following, I use A* path finding
algorithm in the game. Its a searching algorithm that find the coordinates ac-

cording to the nodes placed for the map int the visual world. We will learn more

29

CHAPTER 3. PROBLEM

about that in the result section of Chapter 5.

30

Chapter 4

Implementation

Mad Dash Car Crash games has not been developed with any sort of game en-
gine. The game is based on C++ platform with basic C libraries. C++ provides
object-oriented and generic programming features It also provides facilities for
low-level memory manipulation, which helps for running the game fast. It used
GNU Compiler Collection or GNU C Compiler (GCC) compiler to compile the

game.

To develop the games it used.some tools and libraries that has been discussed
below.

Libraries:
e OpenGL
e GLEW
e SDL

e Assimp
IDE‘s:
e Codeblocks

e Blender

e Photoshop

31

CHAPTER 4. IMPLEMENTATION

4.1 OpenGL (Open Graphics Library)

Open Graphics Library or OpenGL is a software interface that allow multi-
platform, cross-language application programming interface (API) to communi-
cate with graphics hardware for rendering 2D and 3D vector graphics. Purpose of
the APl is to interact with a graphics processing unit (GPU), to achieve hardware-
accelerated rendering. Since OpenGL is merely a graphics library, window and
context creation must be handled by an external library, usually provided by the
operating system. But since we could use a different operating system by using
a cross-platform library and FreeGLUT is an Open Source library that does ex-
actly that. Modeled after the long abandoned but still popular GLUT library
(OpenGL Utility Toolkit), FreeGLUT provides a modern Open Sourced alter-
native that is easy to use, cross platform compatible, and suitable for creating
demonstrative programs such as the ones in this book. FreeGLUT is licensed un-
der the X-Consortium license. The basic graphics control and model rendering of
Mad Dash Car Crash has been done by OpenGL API. OpenGL GLUT and GLU

libraries has been used for perspective rendering, lighting and camera controlling.

4.2 GLEW (OpenGL Extension Wrangler)

For loading extensions it can be create a platform-dependency, so the next library
will need is the GLEW library (OpenGL Extension Wrangler), which makes it
easier to use OpenGL extensions in programs.We're skipping an important part
of OpenGL by using this 3rd party library, We can found the GLEW library
at glew.sf.net for free, as it is also Open Source and licensed under several un-
restricted licenses that allow us to use GLEW in any code base, similar to the
license that FreeGLUT uses. Please make sure to get version 1.5.4 or higher for

OpenGL 4.0 support.

32

CHAPTER 4. IMPLEMENTATION

4.3 SDL (Simple DirectMedia Layer)

Simple DirectMedia Layer is a cross-platform multimedia development library
that has been used countless time in developing reputed games and well known
commercial projects. The has been developed to provide low level access to audio,
keyboard, mouse, joystick, and graphics hardware via OpenGL and Direct3D.
SDL works with a platform’s underlying multimedia capabilities to provide a
constant and open API across multiple operating system. Some of SDL operating

systems, including:
e Windows
e Mac OS X
e OS9
e Linux
e Google Android
e AmigaOS
e Haiku/BeOS
e Syllable

e WebOS

SDL is written in C, works natively with C++, and there are bindings available
for several other languages, including C# and Python. It also provides bindings

to many other languages, including (a partial listing):
o C#
e Ada

Eiffel

o D

Euphoria

Erlang

33

CHAPTER 4. IMPLEMENTATION

e Haskell
e Guile
e Lisp

o Java

e ML

SDL can be used in combination with the OpenGL API or Direct3D API for
3D graphics. Basic Initialization and Shutdown, Configuration Variables, Error
Handling, Log Handling could be done by SDL. Supports easy rotation, scaling
and alpha blending, all accelerated using modern 3D APIs. Vast use in display
and window management, surface functions, rendering acceleration, etc. Can
create and manage multiple windows. Acceleration is supported in SDL using
OpenGL and Direct3D, and there is also a software fallback in it. It is mostly
been used for event handling features for Keyboard, Mouse, Joystick and Game

controller. Events and API functions provided for:
e Application and window state changes

e Mouse input

Keyboard input

Joystick and game controller input

Multitouch gestures

Some other features of SDL are:
e Force Feedback

Audio

Filesystem Paths, File I/O Abstraction

Shared Object Support

Threads

Timers

34

CHAPTER 4. IMPLEMENTATION

CPU Feature Detection

Shared Object Loading and Function Lookup

Platform and CPU Information

Endian Independence

Power Management Status

Platform-specific functionality

Window initialization, event handling, audio control of Mad Dash Car Crash has
been games are done by the SDL libraries. The game is not developed with any
kind of game engines but in a hand SDL is also one kind of game engines. So in

that circumstance it is using SDL game engine.

4.4 Assimp (Open Asset Import Library)

Open Asset Import Library or Assimp is a generic importer library to load and
process geometric scenes from various data formats. Open Asset Import Library
or Assimp can import and export various common 3D formats. The library is
written in platform-independent, portable C++. Bindings for other languages

and ecosystems are available. Assimp supported file formats are:
e Collada (*.dae;*.xml)
e Blender (*.blend) 3
e Biovision BVH (*.bvh)
e 3D Studio Max 3DS (*.3ds)
e 3D Studio Max ASE (*.ase)
e Wavefront Object (*.obj)
e Stanford Polygon Library (*.ply)
o AutoCAD DXF (*.dxf)

e IFC-STEP, Industry Foundation Classes (*.ifc)

35

CHAPTER 4. IMPLEMENTATION

e Neutral File Format (*.nff)

e Sense8 WorldToolkit (*.nff)

e Valve Model (*.smd,*.vta) 3

e Quake I (*.mdl)

e Quake II (*.md2)

e Quake III (*.md3)

e Quake 3 BSP (*.pk3) 1

e RtCW (*.mdc)

e Doom 3 (*.mdb5mesh;*.md5anim;*.md5camera)
e DirectX X (*.x).

e Quick3D (*.q30;q3s).

e Raw Triangles (.raw).

e AC3D (*.ac).

e Stereolithography (*.stl).

e Autodesk DXF (*.dxf).

e Irrlicht Mesh (*.irrmesh;*xml).
e Irrlicht Scene (*.irr;y*.xml).

e Object File Format (*.off).

e Terragen Terrain (*.ter)

e 3D GameStudio Model (*.mdl)
e 3D GameStudio Terrain (*.hmp)
e Ogre (*.mesh.xml, *.skeleton.xml, * . material)3
e Milkshape 3D (*.ms3d)

e LightWave Model (*.Iwo)

e LightWave Scene (*.lws)

36

CHAPTER 4. IMPLEMENTATION

e Modo Model (*.Ixo)
e Character Studio Motion (*.csm)
e Stanford Ply (*.ply)

e TrueSpace (*.cob, *.scn)2

e XGL (*.xgl, *.zgl)

For Mad Dash Car Crash, Callada file formats has been used to integrate model
file. Most of the models, objects, structures and all cars are loaded in the game
with Open Asset Import Library. Models are being loaded with lighting and

meterial within it.

4.5 IDE‘s

For code implementation and need of cross platform support, in the development
of the game used a free open source IDE Code::Blocks. It has a custom build
system and optional Make support. Any kind of functionality can be added by
installing/coding a plugin. For instance, compiling and debugging functionality
is already provided by plugins! Written in C++, it offers interfaces for both C
and C++ and with also in Fortran. For its easy support of multiple compilers,
including GCC and MinGW, it help linking the graphics library such as OpenGL,

SDL, etc is simple to use and link up in this IDE.

Free and open-source 3D computer graphics software product used for creat-
ing animated f3D pipeline modeling, rigging, animation, simulation, rendering,
compositing and motion tracking, even video editing and game creation. It also
has a game engine features in it. Its interface uses OpenGL to provide a con-
sistent experience.Blender is free to use for any purpose, including commercially
or for education. All car models for this game has been built with blender and

export with COLLADA plugin to execute in the code with assimp library.

37

CHAPTER 4. IMPLEMENTATION

Photoshop is a digitally used image-editing software developed and manufac-
tured by Adobe Systems Inc. Photoshop can be used for almost any kind of image
editing, such as touching up photos, creating high-quality graphics, and much,
much more. Photoshop is considered one of the leaders in photo editing software.
The software allows users to manipulate, crop, resize, and correct color on digital
photos. The software is particularly popular amongst professional photographers
and graphic designers. Some of the images of the paper done with this software

and some editing too.

4.6 Class Diagram

SDLController - Main B OpenGLController
: =
> ¥
Mag : Y _ ' l ¥
T] > AssimplLoader lg—|
Model - ImagelLoader
Y
r . ¥
Road
Car Turntable
Y
Y
Comera
AlgebraMath
L BugCar
% |
Y Y
Indy Car
Light Buttan

Figure 4.1: Games Full Class Diagram

4.6.1 Main

It is the main function that declared as a non-member function in the global
namespace. It initialize the Controller class where it initialize all other classes to

load the game. The initialized functions are listed here:

38

CHAPTER 4. IMPLEMENTATION

void roadSetup();
void carChoose();
void raceScreen();
bool display();

void classInitializer();

4.6.2 Controller

bool quit;
bool fullScreen = false;
bool gameStart = true;

int chooseCar = 0;

Functions

void fullPower();

void nullPower();

void carStatistics();

void controllScreen() ;

void keyPressed(SDL_Event event);
void keyReleased(SDL_Event event);
void windowEvent (SDL_Event event);

void mouseEvent (SDL_Event event);

4.6.3 SDLController

Uint32 Flag;

char* Game_Title;

int SCREEN_WIDTH = 800;
int SCREEN_HEIGHT = 600;
int SCREEN_FPS = 60;

SDL_Window* myWindow; /* Our window handle */

39

CHAPTER 4. IMPLEMENTATION

SDL_SysWMinfo info;

SDL_GLContext myContext; /* Our opengl context handle */

Functions

SDLController(char* title);
“SDLController();

bool init();

void setFlag(int a);

int getWidth();

int getHeight();

4.6.4 OpenGLController

bool init();

Functions

OpenGLController();

“OpenGLController();

4.6.5 Model

GLfloat x, y, z;
GLfloat speed;
GLfloat angle, Rx, Ry, Rz;

bool active;

Functions

Model () ;
“Model();
void setActive(bool s);

virtual void render();

40

CHAPTER 4. IMPLEMENTATION

4.6.6 Camera

float
float
float
float
static
static
static

static

Functions

camX, camY, camZ;
lookX, lookY, lookZ;

upX, upY¥, upZ;

camR;

const int FIXED_MODE = O;

const int REVOLVE_MODE = 1;
const int THIRD_PERSON_MODE = 2;
const int FIRST_PERSON_MODE = 3;

Camera(Model *target);

void s

void s

void s

etCameraMode (const int mode);
etCamera();

etTarget (Model *target);

4.6.7 Light

int LI

float

float

float

float

float

float

float

float

float

float

int on

GHT;

ambient [4];
diffusel[4];
specular[4];
position[4];
spot_direction[3];
spot_exponent;
spot_cutoff;
constant_attenuation;
linear_attenuation;
quadratic_attenuation;

_off_state;

41

CHAPTER 4. IMPLEMENTATION

Functions

Light ();

“Light ();

void Init (int 1);

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

SetLight (int 1);

SetValues ();

TurnOn ();

Turn0ff ();

Toggle ();

GetOnOffState ();

SetAmbientColor (float r, float g, float b, float a);

GetAmbientColor (float *r, float *g, float *b, float *a);

SetAmbientColor (float c[4]);

GetAmbientColor (float *c[4]);

SetDiffuseColor (float r, float g, float b, float a);

GetDiffuseColor (float *r, float *g, float *b, float *a);

SetDiffuseColor (float c[4]);

GetDiffuseColor (float *c[4]);

SetPosition
GetPosition
SetPosition
GetPosition
SetSpecular
GetSpecular
SetSpecular

GetSpecular

(
(

(

float x, float y, float z, float w);
float *x, float *y, float *z, float *w);
float pl[4]);

float *p[4]);

float r, float g, float b, float a);
float *r, float *g, float *b, float *a);
float s[4]);

float *s[4]);

SetSpotDirection (float x, float y, float z);

GetSpotDirection (float *x, float *y, float *z);

SetSpotDirection (float s[3]);

42

CHAPTER 4. IMPLEMENTATION

void GetSpotDirection (float *s[3]);
void SetSpotExponent (float exponent);
float GetSpotExponent ();

void SetSpotCutoff (float cutoff);
float GetSpotCutoff ();

void SetConstantAtt (float constant);
float GetConstantAtt ();

void SetLinearAtt (float linear);

float GetLinearAtt ();

void SetQuadraticAtt (float quadratic);

float GetQuadraticAtt ();

4.6.8 Map
float MapX = O;
float MapY = 450;
float MapW = 200;
float MapH = 150;
float CenterX = MapX+(MapW/2);
float CenterY = MapY+(MapH/2);

int mapCoordinates([10] [10] [2];
trackCoordinate * track = new trackCoordinate[10];

int gMap = O;

Functions

MapQ) ;

“"MapQ ;

void setGMap(float m);
int getGMapQ);

void loadTrack();

43

CHAPTER 4. IMPLEMENTATION

void setMapLoc(float x, float y, float w, float h);

void setMapCoordinates(float x, float y, float w, float h);

4.6.9 ImageLoader

char* pixels;
int width;

int height;

Functions

Image(char* ps, int w, int h);
“Image();

GLuint loadTexture(Image* image);

4.6.10 Car
GLUquadricObj *FRWheel = gluNewQuadric();
GLUquadricObj #*FLWheel = gluNewQuadric();
GLUquadricObj *BRWheel = gluNewQuadric();
GLUquadricObj #*BLWheel = gluNewQuadric();
GLUquadricObj *FAxile = gluNewQuadric();
GLUquadricObj *BAxile = gluNewQuadric();

float dt;

Model *target;

vec2 carLocation;

float carHeading;

float carSpeed, maxSpeed;

float steerAngle;

float maxSteerAngle = 45;

float wheelBase, minWB, maxWB; // the distance between the two azles

bool plus, minus, up, down, left, right, steerLock;

44

CHAPTER 4. IMPLEMENTATION

vec2 frontWheel;

vec2 backWheel;

Functions

Car(float x, float y);
“Car();

void FrontRightWheel();
void FrontLeftWheel();
void BackRightWheel();
void BackLeftWheel();
void FrontAxile();

void BackAxile();

void CarBody();

virtual void render();

void setWheelBase(float wb);

Chapter 5

Result and Evaluation

The most challenging part this game developing was applying the car physics in
the game. Most of the 3D car games apply almost similar car physics to move the
car. Control car wheels while moving specifically the rear wheels are need to slide
sideways whenever we turn. The very simple assumption that we will start with
is that each wheel can only move in the direction it is pointing. This is actually
a very good approximation for normal driving, and exactly appropriate for these
kinds of parking games. The other simplification we will make is to use what is
called a bicycle model, we imagine that the car has just two wheels; one at the
front in the middle to steer, and one at the back in the middle that cannot steer.
Of course we can draw a real car with four wheels, but the physics will only be

considering two wheels at the centre of each axle.

5.1 Implementing the A* algorithm

The first step in finding the path algorithm is to explain the searching area where
we need some way to represent our game world in a manner which that allows
the searching algorithm to search for and find the best path. In our game, we use
color as trick of to do the collision detection [13]. Using this trick us first need
to make a collision detection map, as shown in Fig. 3. This can be done easily

by using any image processing software (e.g., Photoshop), and then changes the

46

CHAPTER 5. RESULT AND EVALUATION

track to the color which users want to set it as the collision detection color (e.g.,
block color). Everything else in the collision detection map, where the cars are
not allowed to drive, we just need to paint them to white (or any color just do
not use the track color black). Ultimately, the game world is simplified by placing
1280*782 nodes, throughout the game environment. White color nodes represent
obstacles and other colors nodes represent the nodes which can be passed. After
that, we have divided our search area into a 1280*782 square grid. This particular
method reduces our search area to a simple two dimensional array. Each item
in the array represents one of the squares on the grid, and its status is recorded
as passable or impassable. The path is found by figuring out which squares we
should take to get from node A to node B. Once the path is found, the game-
controlled car moves from the center of one square to the center of the next until

the target is reached.

5.2 Pathfinding algorithm for random obstacles
avoidance

In order to generalize the pathfinding algorithm in a racing game solves the
dynamic obstacles avoidance problem. We have recently proposed a dynamic
pathfinding method. Two collision detection points are put in front of the cars
right side and left side. Where the variable y is the half width of car, that is
6 pixels, and the collision detection distance x is an adjusted variable indicated

the distance from the car center to the center of the two collision detection points.

To perform this algorithm we need to put some color detecting points around
the moving car. For this purpose, if we found that the position of the car‘s color
detection point its color is the same as the tracked color, then no collision occurs.
In the other hand, if we found that the position of the color detection point is

white, then it indicates the car is leaving the track, which means the car needs

47

CHAPTER 5. RESULT AND EVALUATION

to turn a direction to keep the car inside the track. In my game for the imple-
mentation, we will calculate the car‘s position in advance. If in the next time
frame the collision is detected. We will just simply turn on a default setting circle
around for the car to avoid collision. In other words, when the detection point
of left front touches the edge of track, the car will turn in a clockwise direction.
On this, the car will turn in a counterclockwise direction, if the detection point
of right front touches the edge of track. In order to make the game-controlled
car look more natural and smooth, the car‘s rotation speed is set to 0.25 radians

(14.3 degrees) in this study.

The most common artificial intelligence in a racing game is waypoint naviga-
tion by carefully placing waypoints (nodes) in the game environment to move the
game-controlled characters between each point. This is a very time consuming
and CPU intensive problem. Using the A* algorithm can effectively solve the
pathfinding problem in a static racing game environment; therefore, we present
two modified A* algorithm instead of putting waypoints by hand and minimum
the lap time. Finally, we propose a more general dynamic algorithm which can
solve the random obstacles avoidance problem in a racing game. All the three
algorithms are able to find the path for a car racing game and can save the most

import resource in game, CPU cycles.

48

Chapter 6

Conclusion

This dissertation set out to investigate the role that computation plays in various
aspects of preference aggregation, and to use computation to improve the resulting
outcomes. In this final chapter, we will review the research contributions of this

dissertation, as well as discuss directions for future research.

6.1 Contributions

The following are the main research contributions of this dissertation. (Some

minor contributions are omitted.)

In these research paper I tried to cover only the implementation I could have
done in my small time of research as I covered in Chapter 1 about my game
and story or plot of the game. Following on Chapter Background Study where I
tried to discuss about my background studies what we need to understand before
starting the brief inside of the game implementation of the game. In Problem
and Result Chapter I covered up what problems I faced in the developing of this

games and what possible solution I could come up with.

Many problems that I faced in developing the game is already solved, but

some of them are still unshorted due to less time get in the research periods. One

49

CHAPTER 6. CONCLUSION

of them is enemy car racing Al. It is the most important part of my game that I
couldn‘t cover up in my research time. Al of other racing cars or CPU controlled

car possibly also be covered up with the pathfinding algorithm.

Fighting mode of the game which makes it a fighting car racing games is not

covered up in this research.

20

References

1]

2]

[10]

[11]

Wikipedia, “Auto racing,” April 2013. [Online]. Available: https:
/ /en.wikipedia.org/wiki/Auto_racing

H. H. C. CHAMPIONSHIPS, “Advance booking has now closed. tickets
will be available to purchase at the gate.” 2013. [Online]. Available:
http://www.topracingcars.com/

C. Chapple, “Smart phone wallpaper,” April
2014. [Online]. Available: http: //www.spwallpapers.
com/Others-Resolution/Cool-racing-cars-wallpapers-854x480/
Cool-racing-cars-wallpapers-854x480-31

Manic, “Manic,” April 2013. [Online]. Available: http://www.racing-cars.
com/main.asp’sitepages=manic

BlackPanthaa, “Need for speed no limits announced! - is underground 3
next?” Nov 2014. [Online]. Available: https://www.youtube.com/watch?
v=5_PtCwH_-8w

B. Bernstein, “mad max' game: 5 fast facts you need to know,” August
2014. [Online]. Available: http://heavy.com/games

J. A. G. L. delaOssa and V. Lopez, Improvement of a car racing controller
by means of Ant Colony Optimization algorithms. pp. 365-371: in IEEE
Symposium on Computational Intelligence and Games, 2008.

T. N. S. Fujii and H. Ishibuchi, A study on constructing fuzzy systems for
high-level decision making in a car racing game. in IEEE Congress on
Evolutionary Computation, 2008.

P. B. J. Togelius and S. M. Lucas, Multi-population competitive co-evolution
of car racing controllers. in IEEE Congress on Evolutionary Computation,

2007.

J. Togelius and S. M. Lucas, Evolving robust and specialized car racing skills.
in Proceedings of the IEEE Congress on Evolutionary Computation, 2006.

J. Y. Wang and Y. B. Lin, An Effective Method of Pathfinding in a Car
Racing Game. in The 2nd International Conference on Computer and Au-
tomation Engineering, 2010.

o1

https://en.wikipedia.org/wiki/Auto_racing
https://en.wikipedia.org/wiki/Auto_racing
http://www.topracingcars.com/
http://www.spwallpapers.com/Others-Resolution/Cool-racing-cars-wallpapers-854x480/Cool-racing-cars-wallpapers-854x480-31
http://www.spwallpapers.com/Others-Resolution/Cool-racing-cars-wallpapers-854x480/Cool-racing-cars-wallpapers-854x480-31
http://www.spwallpapers.com/Others-Resolution/Cool-racing-cars-wallpapers-854x480/Cool-racing-cars-wallpapers-854x480-31
http://www.racing-cars.com/main.asp?sitepages=manic
http://www.racing-cars.com/main.asp?sitepages=manic
https://www.youtube.com/watch?v=5_PtCwH_-8w
https://www.youtube.com/watch?v=5_PtCwH_-8w
http://heavy.com/games

REFERENCES

[12] T. Nakashima and S. Fujii, Designing high-level decision making systems
based on fuzzy if-then rules for a point-to-point car racing game. Soft Com-
puting.

[13] C. Chapple, “The top 16 game engines for 2015”7 April
2015. [Online]. Available: http://www.develop-online.net/tools-and-tech/
the-top-16-game-engines-for-2014 /0192302

52

http://www.develop-online.net/tools-and-tech/the-top-16-game-engines-for-2014/0192302
http://www.develop-online.net/tools-and-tech/the-top-16-game-engines-for-2014/0192302

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Background Study
	Car Racing/ Motor Racing
	Formula 1 Racing
	Touring Car Racing
	Sport Car Racing
	Production Car Racing
	One Make or One Model Racing
	Stock Car Racing
	Rallies
	Off Road Racing
	Drag Racing

	Racing Video Game
	Car Fighting Video Games
	Game Engines
	Components of the Modern Game Engine

	Problem
	Position Finding
	Wheel Movement
	Car Next Location
	Car Next Location
	Pathfinding Algorithm

	Implementation
	OpenGL (Open Graphics Library)
	GLEW (OpenGL Extension Wrangler)
	SDL (Simple DirectMedia Layer)
	Assimp (Open Asset Import Library)
	IDE`s
	Class Diagram
	Main
	Controller
	SDLController
	OpenGLController
	Model
	Camera
	Light
	Map
	ImageLoader
	Car

	Result and Evaluation
	Implementing the A* algorithm
	Pathfinding algorithm for random obstacles avoidance

	Conclusion
	Contributions

	References

