1.1.6. Let $a, b, c \in \mathbb{Z}$ with $b, c>0$. Suppose that when a is divided by b, the quotient is q and the remainder is r; when q is divided by c, the quotient is k and the remainder is t. Prove that when a is divided by $b c$, the quotient is also k.

Proof. Since a is divided by b,he quotient is q and the remainder is r. So $\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0<r<b$. Since q is divided by c , the quotient is k and the remainder is t . Thus, $\mathrm{q}=\mathrm{ck}+\mathrm{t}, 0<t<c$. Put $\mathrm{q}=\mathrm{ck}+\mathrm{t}$ into $\mathrm{a}=\mathrm{bq}+\mathrm{r}$, then we get $a=b c k+b t+r$. So when a is divided by bc, the quotient is also k .

$$
\text { Feedback: } \quad \text { FS } \quad \text { RT } \quad \text { EOK } \quad \star(7 \mathrm{pts})
$$

1.1.10. Let n be a positive integer and $a, c \in \mathbb{Z}$. Prove that: a and c leave the same remainder when divided by $n \Longleftrightarrow \exists k \in \mathbb{Z}$ such that $a-c=n k$.

Proof. "sufficiency" Since a and c leave the same remainder when divided by n. Suppose $\mathrm{a}=\mathrm{nx}+\mathrm{r}, 0<r<n, x \in \mathbb{Z}$. $\mathrm{c}=\mathrm{ny}+\mathrm{r}, 0<r<n, y \in \mathbb{Z}$. So $\mathrm{a}-\mathrm{c}=\mathrm{n}(\mathrm{x}-\mathrm{y})$. Since $x, y \in \mathbb{Z}$. Therefore, $x-y \in \mathbb{Z}$. Assume $\mathrm{x}-\mathrm{y}=\mathrm{k}, k \in \mathbb{Z}$. So a-c=nk, and $\exists k \in \mathbb{Z}$ such that $\mathrm{ac}=\mathrm{nk}$. "necessity" Suppose $\mathrm{a}=\mathrm{nx}+\mathrm{p}$, $0<p<n, x \in \mathbb{Z} . \mathrm{c}=\mathrm{ny}+\mathrm{q}, 0<q<n, y \in \mathbb{Z}$. So a-c=n(x-y)+(p-q), $x-y \in \mathbb{Z}$. Since $\exists k \in \mathbb{Z}$ such that $\mathrm{ac}=\mathrm{nk}$. Therefore $\mathrm{p}-\mathrm{q}=0$, $\mathrm{So} \mathrm{p}=\mathrm{q}$, a and c leave the same remainder when divided by n.

Feedback: FS RT EOK $\quad \star$ (7 pts)

