1.1.6. Let $a, b, c \in \mathbb{Z}$ with b, c > 0. Suppose that when a is divided by b, the quotient is q and the remainder is r; when q is divided by c, the quotient is k and the remainder is t. Prove that when a is divided by bc, the quotient is also k.

Proof. Since a is divided by b,he quotient is q and the remainder is r. So a=bq+r, 0 < r < b. Since q is divided by c, the quotient is k and the remainder is t. Thus, q=ck+t, 0 < t < c. Put q=ck+t into a=bq+r, then we get a=bck+bt+r. So when a is divided by bc, the quotient is also k.

Feedback: FS RT EOK \bigstar (7 pts)

1.1.10. Let *n* be a positive integer and $a, c \in \mathbb{Z}$. Prove that: *a* and *c* leave the same remainder when divided by $n \iff \exists k \in \mathbb{Z}$ such that a - c = nk.

Proof. "sufficiency" Since a and c leave the same remainder when divided by n. Suppose a=nx+r, 0 < r < n, $x \in \mathbb{Z}$. c=ny+r, 0 < r < n, $y \in \mathbb{Z}$. So a-c=n(x-y). Since $x, y \in \mathbb{Z}$. Therefore, $x - y \in \mathbb{Z}$. Assume x-y=k, $k \in \mathbb{Z}$. So a-c=nk, and $\exists k \in \mathbb{Z}$ such that ac=nk. "necessity" Suppose a=nx+p, $0 , <math>x \in \mathbb{Z}$. c=ny+q, 0 < q < n, $y \in \mathbb{Z}$. So a-c=n(x-y)+(p-q), $x - y \in \mathbb{Z}$. Since $\exists k \in \mathbb{Z}$ such that ac=nk. Therefore p-q=0, So p=q, a and c leave the same remainder when divided by n.

Feedback: FS RT EOK \bigstar (7 pts)