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Abstract

Linear regression is one of the most widely used statistical methods available
today. It is used by data analysts and students in almost every discipline.
However, for the standard ordinary least squares method, there are several
strong assumptions made about data that is often not true in real world data
sets. This can cause numerous problems in the least squares model. One of
the most common issues is a model overfitting the data. Ridge Regression
and LASSO are two methods used to create a better and more accurate
model. I will discuss how overfitting arises in least squares models and the
reasoning for using Ridge Regression and LASSO include analysis of real
world example data and compare these methods with OLS and each other
to further infer the benefits and drawbacks of each method.

1. Introduction

Consider the standard model of ordinary least squares (OLS) for multiple
linear regression

Y = Xβ + ε (1)

where y ∈ Rn, β ∈ Rp, and X ∈ Rnxp. We can expand this to
yi =

∑p
j=1 βiXij + εi, ∀i = 0, 1, ..., n. Here βj are non-random unknown

parameters, Xij are non-random and observable, and εi are random so yi are
random. This standard model is used widely across disciplines and is a very
powerful tool for any statistician.

1.1. Gauss-Markov Theorem

With the standard model given above, several assumptions are made
about the data and model that are not necessarily true for real-world data.
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The most common assumptions are:

• E[ε] = 0

• V [ε] = σ2

• Cov[εi, εj] = 0 ∀ i 6= j

If these assumptions are found to be true, the Gauss-Markov theorem
states that OLS is the best linear unbiased estimator for the dataset. These
assumptions are oftentimes mostly true in smaller datasets, which makes
OLS a very powerful tool for statisticians and scientists everywhere. Unfor-
tunately, these assumptions tend to be false with sufficiently large datasets
and therefore the OLS method can cause some issues with the resulting
model.

1.2. Multicollinearity and Overfitting

One of the most common issues with the OLS method is the tendency
for the model to overfit the data when there is too much noise caused by
correlated variables. This can happen in many different situations. The
most extreme case occurs when p > n. From multiple linear regression we
have the coefficient estimate

β̂ = (XTX)−1XTY (2)

which we can rewrite as [(XTX)−1XT ]−1β̂ = Y . We can clearly see that if
p > n there exists no unique solution to the system and linear regression
fails to produce accurate coefficient values. With less extreme situations
multicollinearity can cause the model to be overly sensitive to small changes
in parameter values and coefficients can have the ”wrong” sign or an incorrect
order of magnitude. When a linear model does begin to overfit the data, the
coefficients can hive high standard errors and low levels of significance despite
a high R2 value.

1.3. Geometry of Least Squares

Least Squares is most effective when dealing with orthogonal design ma-
trices. When the matrix is ill-conditioned, least squares will still attempt
to find a solution such that d(Xβ, Y ) is minimized. Presented here is the
definition of the least squares solution:
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Definition 1. β̂ is a least squares solution of the equation system Xβ = Y
iff

∀β ∈ Rn ‖Y −Xβ̂‖ ≤ ‖Y −Xβ‖

Figure 1: The least squares solution Xβ̂ is closer to Y than any other Xβ

This figure highlights the importance of orthogonality in the design ma-
trix. With perfectly orthogonal matrix, the least squares solutions will give
perfect solutions. As mentioned in section 1.2, multicollinearity can also
cause instability in coefficient estimation, in which small changes in param-
eter values. The figure below shows the problem, and gives some insight on
why the method we are studying is called ridge regression:
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Figure 2: Large changes in the parameter values along the ”ridge” of the estimate cause
small changes in the prediction error, so estimates are unstable.

2. Ridge Regression and the LASSO

2.1. Introduction to Regularization

Regularization is a method for solving ill-posed problems or problems of
models overfitting data. The method involves introducing additional infor-
mation to a model in the form of a penalty. In terms of Ridge Regression
and LASSO, the penalty imposes a shrinkage on the coefficient estimates
of ordinary least squares. This penalty controls the instability found in the
least squares model with nonorthogonal matrices. Generally, for the Lp reg-

ularization term we have Lp = (
∑
i

‖βi‖p)
1
p . Ridge and LASSO deal with the

L2 and L1 penalties respectively. Regularization is used in preference over
other common methods of determining the best linear model, such as best
subset selection and stepwise subset selection.

2.2. Ridge Regression

Given the sum of square error estimate for least squares we have (Y −
Xβ)T (Y −Xβ). Ridge regression adds the L2 penalty such that we have

(Y −Xβ)T (Y −Xβ) + λβTβ (3)
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From equation (3) we can derive the ridge coefficient estimate:

(Y −Xβ)T (Y −Xβ) + λβTβ

= (Y T − βTXT )(Y −Xβ) + λβTβ

= Y TY − Y TXβ − βTXTY + βTXTXβ + λβTβ

= Y TY − 2Y TXβ + βTXTXβ + λβTβ

→ d

dβ
= 0− 2Y TX + 2XTXβ + 2λβ = 0

= β̂ridge = (XTX + λI)−1XTY (4)

In equations (3) and (4), λ ≥ 0 is a tuning parameter for the penalty, which
is determined separately. When λ = 0 we have the ordinary least squares
estimate, and when λ→∞ all the coefficients approach zero. The selection
of lambda, and thus the optimal model, will be discussed later in the paper.
As stated in section 2.1, this penalty shrinks the coefficients. Unlike least
squares, which produces only one set of estimates for a model, Ridge Regres-
sion produces many sets, depending on what value was assigned to λ. Ridge
regression’s advantage over ordinary least squares lies in it’s bias-variance
trade-off. As λ increases, the flexibility of the model fit decreases. This leads
to increased bias but decreased variance. There is an existence theorem for
ridge regression that states there always exists a λ > 0 such that the MSE is
less than that of the least squares estimate λ = 0. A proof of the theorem can
be found in Hoerl (1970) [1]. However, ridge regression has a major disad-
vantage to other methods dealing with ill-posed problems and overfitting: it
does not perform feature selection. While ridge shrinks coefficients towards
zero, the final model chosen will always include all of the predictors (unless
λ = ∞ in which all predictors will be zero). The LASSO is a method that
does perform feature selection.

2.3. The LASSO

The LASSO model can be shown in the same form as equation (3) above:

(Y −Xβ)T (Y −Xβ) + λ|β|1 (5)

Where |β|1 =
p∑
j=1

|β|j. Comparing equations (3) and (5), we can see that the

equations are similar, the only difference is that LASSO uses the L1 penalty
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instead of the L2 penalty. The largest benefit of LASSO is the model’s ability
to create sparse matrices. The disadvantage that LASSO has from ridge is
that because the L1 penalty contains absolute values, it is much more difficult
to solve analytically. Like Ridge, the correct choice of λ and thus the optimal
model is very important and will be discussed later in the paper.

2.4. Understanding the Behavior of Ridge Regression and LASSO

In this section we will look at two different formulations of ridge and
LASSO to gain better intuition about the methods. First, we will consider
the special case such that n = p and X is the identity matrix (1s on the
diagonal and 0s elsewhere). We will also assume the intercept of the model

is zero. Thus we can write ordinary least squares as
p∑
j=1

(yj − βj)2. Here we

can easily see the least squares solution is βj = yj. We can find the coefficient
estimates of ridge:

(yj − βj)2 + β2
j

= y2j − 2yjβj + β2
j + λβ2

j

→ d

dβ
= 0 = −2yj + 2βj + 2λβj

βj =
yj

1 + λ
(6)

The LASSO estimate is found similarly and thus we obtain:

βj =


yj − λ

2
if yj >

λ
2

yj + λ
2

if yj < −λ
2

0 if |yj| ≤ λ
2

These two estimates show different types of shrinkage. In ridge, the least
squares estimate is shrunk at a constant rate for every least squares estimate.
LASSO shrinks the least squares estimates at a constant rate unless the least
squares estimate absolute value is less than λ

2
; all those coefficients are shrunk

to zero
Alternatively, you can show that the Ridge and LASSO models solve these
equations respectively:

(Y −Xβ)T (Y −Xβ) such that βTβ ≤ t (7)

(Y −Xβ)T (Y −Xβ) such that |β| ≤ t (8)
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This means that for every value of λ in ridge and LASSO, there exists a t
such that you will get the same coefficient estimates for (3) and (7), and the
same estimates for (5) and (8). When p = 2, (7) shows that ridge regression
has the smallest RSS out of all the points that lie within the diamond defined
by |β1|+ |β2| ≤ t. (8) shows LASSO performs the same with the points that
lie within the circle defined by β2

1 +β2
2 ≤ t. This is illustrated below in figure

3:

Figure 3: Image taken from [5]

In this figure, β̂ is the least squares solution, and the diamond and circle
portray the ridge and LASSO constraints given in (7) and (8). The ellipses
around β̂ are lines of constant RSS. (7) and (8) show that the LASSO and
ridge coefficient estimate is where the ellipses and constraint regions meet.
Since the constraint region of ridge is a circle, the probability that the in-
tersection will occur on an axis is zero. In contrast, the diamond constraint
region has corners at each axis, so the intersection of the ellipses and the
constraint region will often occur on the axis.
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3. Example data

To study the application of Ridge and LASSO, data was taken from the
intergovernmental organization ECMWF’s databases available to the public
for educational and scientific use. The dataset presented in this paper is
fifteen predictors (selected from a preliminary analysis of a set of sixty vari-
ables) modeled on a selected response variable. There were 240 observations.
Conclusions about the data were not desired, the data was used only to ob-
serve how Ridge and LASSO models perform on highly correlated data sets.
All computation was done with R software using the package glmnet.

3.1. Standardizing the Predictors

For this dataset, the predictors were standardized. This is because unlike
ordinary least squares, which is scale invariant, Ridge and LASSO formulas
have the sum of squared coefficients and the sum of absolute value coeffi-
cients term respectively. This means that each coefficient estimate is not
only dependent on the value of λ but also on the scaling of each predictor.
Standardizing the predictors solves any issues with the model that may arise
from predictors that have different scales.

3.2. Ridge Trace

When applying Ridge to a set of data, viewing the ridge trace graph can
provide valuable insight about the models shrinkage of parameters. the ridge
trace plot from our model of the data is given below:
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Figure 4: Ridge Trace Plot

In Figure 4, each curve in the plot corresponds to a different ridge coef-
ficient value. These values are plotted against lambda values on the x-axis.
The numbers above the graph represent the number of predictors in each
lambda model, and is more important when predictor selection occurs in the
LASSO model. On the far left of the plot the lambda value is near zero,
and thus is representative of the least squares coefficient values. As lambda
increases the coefficients shrink towards zero. While in general the coeffi-
cients shrink, one can see that some coefficients can infrequently increase as
λ increases. The line in the graph represents the model’s chosen best value
for lambda.

3.3. Lambda selection

The best lambda value of the model is determined from figure 5. In this
graph we see the mean-squared error of the model plotted against the λ
values in the x-axis. The line shows the λ value that produces the lowest
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mean square error. The error is determined using cross-validation, which is
the most common method for testing models of ridge regression and LASSO.
Glmnet performs 10-fold cross validation on the dataset. This means that
the data being modelled is split into 10 partitions, and then one partition
is chosen as a validation section. The method is then run on the remaining
nine partitions and tested against the validation set and a mean square error
is determined. This process is repeated so that each partition is used as a
validation set and then the mean square errors are averaged and plotted on
this graph. This process is used for both Ridge regression and LASSO.

Figure 5: Ridge Cross-Validation Plot
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3.4. LASSO Trace

Figure 6: LASSO Trace Plot

Figure 7: LASSO Cross-Validation Plot

In figures 6 and 7 we see the LASSO equivalent to the ridge trace and cross
validation plots shown in sections 3.2 and 3.3. As we can see, the LASSO
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trace plot exhibits different behavior from the ridge trace, with coefficients
disappearing as λ increases. This plot helps visualize the most important
predictors in the model very well. As we can see from the selection of the
optimal λ value, only 6 predictors are chosen to be used in the final model.
The other predictors are sent to zero at a very small λ value and thus have
been determined to have no effect on modeling the response variable. The
cross-validation plot has a very similar curve for the LASSO as it does for
Ridge, which is not surprising.

4. Conclusion

Ridge Regression and LASSO are two methods that improve the overall
accuracy of ordinary least squares regression by adding a bias that imposes
shrinkage on the model that greatly reduces the variance of coefficient esti-
mates. The methods have been a subject of recent study, and there is still
much to learn. This paper reviewed the drawbacks of least squares, discussed
how these regularization methods create a better model, and compared the
methods. There is still much to learn about the methods, however. Statisti-
cal inference on the predictors is still a hot issue that has not been adequately
studied, but some good research has been done [6] [7]. A hybrid method of
both ridge and LASSO called elastic net has been utilized [3], and while this
paper used cross-validation to determine λ the best method for determining
an optimal value of lambda is still being researched [4] [8]. Hopefully this
paper has encouraged a deeper look into these methods and sparked interest
in the use of these methods for big data analysis.
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