Name: Marshal Thrasher

NTI Proposition 9. If n is and integer, then $n \mid 0$.

Proof:
By Definition 1, for any integer n, n divides an integer b if there exists an integer k such that $n k=b$. Let $b=0$, any integer n multiplied by zero equals zero. So $k=0$, Therefore,

$$
\begin{aligned}
& n \mid 0 \\
& \quad \text { Q.E.D. }
\end{aligned}
$$

NTI Corollary 10. If n and a are integers then $n \mid(a-a)$.

Proof:
Building on Proposition 9, $(a-a)$ will always equal zero.
Therefore,

$$
n \mid(a-a)
$$

Q.E.D.

NTI Proposition 11. Let n, a, b be integers. If $n \mid(a-b)$, the $n \mid(b-a)$.

Proof:
By Definition 1, $n k=(a-b)$, using the commutative property and multiplying -1 through we get: $n(-k)=(b-a)-k$ is still an integer Therefore,

$$
\begin{aligned}
& n \mid(b-a) \\
& \text { Q.E.D. }
\end{aligned}
$$

NTI Proposition 12. Let n, a, b, c be integers. If $n \mid(a-b)$ and $n \mid(b-c)$, then $n \mid(a-c)$.

Proof:
By Definition 1, $n k_{1}=(a-b)$ and $n k_{2}=(b-c)$ such that k_{1} and k_{2} are integers. By adding c to both sides on the second equation we obtain:

$$
c+n k_{2}=b
$$

We can now substitute b out of the first equation:

$$
n k_{1}=a-c+n k_{2}
$$

After tidying up the equation we get:

$$
n\left(k_{1}-k_{2}\right)=a-c
$$

Through the basic properties we know the Left Hand Side will always be and integer.
Therefore,

$$
\begin{aligned}
& n \mid(a-c) \\
& \\
& \text { Q.E.D. }
\end{aligned}
$$

