On Proving Leonhard Euler's Evaluation of the Riemann Zeta Function of 2

Ivan V. Morozov

November 2019

Let one consider the Riemann zeta function $\zeta(z)$, with a given integral identity,

$$
\zeta(z)=\frac{1}{\Gamma(z)} \int_{0}^{\infty} \frac{x^{z-1}}{e^{x}-1} d x
$$

In the case where $z=2$, one can evaluate the zeta function of 2 by substituting 2 for z in the integrand,

$$
\zeta(2)=\frac{1}{\Gamma(2)} \int_{0}^{\infty} \frac{x^{2-1}}{e^{x}-1} d x
$$

which simplifies to

$$
\zeta(2)=\int_{0}^{\infty} \frac{x}{e^{x}-1} d x
$$

To evaluate the integral, the property of geometric series can be shown,

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}, \quad|r|<1
$$

The denominator of the integrand is the term $e^{x}-1$. In order to turn the e^{x} term to 1 and the -1 term to something else, it can be multiplied by e^{-x}. However, the numerator x of the integrand has to be multiplied by e^{-x} as well in order for the integral expressions to be equal. Thus one has

$$
\int_{0}^{\infty} \frac{x}{e^{x}-1} d x=\int_{0}^{\infty} \frac{x e^{-x}}{1-e^{-x}} d x
$$

Looking back to the property of geometric series, a can be set as $a=x e^{-x}$, and r as $r=e^{-x}$. And because $\left|e^{-x}\right|<1$ from 0 to infinity, it allows to do the following,

$$
\int_{0}^{\infty} \frac{x}{e^{x}-1} d x=\int_{0}^{\infty} \sum_{n=1}^{\infty} x e^{-x} e^{-x n+x} d x
$$

which simplifies to

$$
\int_{0}^{\infty} \frac{x}{e^{x}-1} d x=\int_{0}^{\infty} \sum_{n=1}^{\infty} x e^{-x n} d x
$$

In this power series, it can be stated that $e^{-x n}$ will decrease at a much greater rate than x will increase, and thus for any real number x the infinite series

$$
\sum_{n=1}^{\infty} x e^{-x n}
$$

will uniformly converge. Taking this into account with the derived integral, one is allowed to switch the integral and summation signs under the condition that the series has a pointwise convergence,

$$
\int_{0}^{\infty} \sum_{n=1}^{\infty} x e^{-x n} d x=\sum_{n=1}^{\infty} \int_{0}^{\infty} x e^{-x n} d x
$$

The function can be integrated now by applying the following substitutions,

$$
\begin{aligned}
u & =x n \\
x & =\frac{u}{n} \\
d u & =n d x \\
d x & =\frac{1}{n} d u
\end{aligned}
$$

Now the integral becomes

$$
\int_{0}^{\infty} \sum_{n=1}^{\infty} x e^{-x n} d x=\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{u e^{-u}}{n^{2}} d u
$$

Factor out $\frac{1}{n^{2}}$ out of the integral,

$$
\int_{0}^{\infty} \sum_{n=1}^{\infty} x e^{-x n} d x=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{0}^{\infty} u e^{-u} d u
$$

One can recognize the gamma function $\Gamma(s)$ represented as

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

for all numbers with a real part greater than 0 . If z is set equal to 2 , then $\Gamma(2)$ is shown by

$$
\Gamma(2)=\int_{0}^{\infty} x e^{-x} d x
$$

Returning to the previous integral, it can be written now as

$$
\int_{0}^{\infty} \sum_{n=1}^{\infty} x e^{-x n} d x=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \Gamma(2)
$$

And considering that $\Gamma(z)=(z-1)$!, then $\Gamma(2)=1!=1$. Then,

$$
\int_{0}^{\infty} \sum_{n=1}^{\infty} x e^{-x n} d x=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

The infinite series and product expansions of the sine function may be brought up,

$$
\begin{aligned}
& \sin z=z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right) \\
& \sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Expanding them, one gets

$$
\begin{gathered}
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots \\
\sin z=z\left(1-\frac{z^{2}}{\pi^{2}}\right)\left(1-\frac{z^{2}}{(2 \pi)^{2}}\right)\left(1-\frac{z^{2}}{(3 \pi)^{2}}\right)(\cdots) \\
\sin z=\left(z-\frac{1}{\pi^{2}} z^{3}\right)\left(1-\frac{z^{2}}{(2 \pi)^{2}}\right)\left(1-\frac{z^{2}}{(3 \pi)^{2}}\right)(\cdots) \\
\sin z=\left(z+\left(-\frac{1}{\pi^{2}}-\frac{1}{(2 \pi)^{2}}\right) z^{3}+\frac{1}{\left(2 \pi^{2}\right)^{2}} z^{5}\right)\left(1-\frac{z^{2}}{(3 \pi)^{2}}\right)(\cdots) \\
\sin z=\left(z+\left(-\frac{1}{\pi^{2}}-\frac{1}{(2 \pi)^{2}}-\frac{1}{(3 \pi)^{2}}-\cdots\right) z^{3}+(\cdots) z^{5}+(\cdots) z^{7}+\cdots\right)
\end{gathered}
$$

From this one can set the following equal,

$$
\left(-\frac{1}{\pi^{2}}-\frac{1}{(2 \pi)^{2}}-\frac{1}{(3 \pi)^{2}}-\cdots\right) z^{3}=-\frac{z^{3}}{3!}
$$

or simply

$$
-\sum_{n=1}^{\infty} \frac{z^{3}}{(n \pi)^{2}}=-\frac{z^{3}}{3!}
$$

Divide both sides by $-z^{3}$,

$$
\sum_{n=1}^{\infty} \frac{1}{(n \pi)^{2}}=\frac{1}{3!}
$$

$3!=6$, and so

$$
\sum_{n=1}^{\infty} \frac{1}{(n \pi)^{2}}=\frac{1}{6}
$$

Multiply both sides by π^{2},

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Thus it has been proven that

$$
\int_{0}^{\infty} \frac{x}{e^{x}-1} d x=\frac{\pi^{2}}{6}
$$

and therefore

$$
\zeta(2)=\frac{\pi^{2}}{6}
$$

