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Let one consider the Riemann zeta function ζ(z), with a given integral iden-
tity,

ζ(z) =
1

Γ(z)

∫ ∞
0

xz−1

ex − 1
dx

In the case where z = 2, one can evaluate the zeta function of 2 by substituting
2 for z in the integrand,

ζ(2) =
1

Γ(2)

∫ ∞
0

x2−1

ex − 1
dx

which simplifies to

ζ(2) =

∫ ∞
0

x

ex − 1
dx

To evaluate the integral, the property of geometric series can be shown,

∞∑
n=1

arn−1 =
a

1− r
, |r| < 1

The denominator of the integrand is the term ex − 1. In order to turn the
ex term to 1 and the -1 term to something else, it can be multiplied by e−x.
However, the numerator x of the integrand has to be multiplied by e−x as well
in order for the integral expressions to be equal. Thus one has∫ ∞

0

x

ex − 1
dx =

∫ ∞
0

xe−x

1− e−x
dx

Looking back to the property of geometric series, a can be set as a = xe−x,
and r as r = e−x. And because |e−x| < 1 from 0 to infinity, it allows to do the
following, ∫ ∞

0

x

ex − 1
dx =

∫ ∞
0

∞∑
n=1

xe−xe−xn+x dx

which simplifies to ∫ ∞
0

x

ex − 1
dx =

∫ ∞
0

∞∑
n=1

xe−xn dx

1



In this power series, it can be stated that e−xn will decrease at a much greater
rate than x will increase, and thus for any real number x the infinite series

∞∑
n=1

xe−xn

will uniformly converge. Taking this into account with the derived integral, one
is allowed to switch the integral and summation signs under the condition that
the series has a pointwise convergence,∫ ∞

0

∞∑
n=1

xe−xn dx =

∞∑
n=1

∫ ∞
0

xe−xn dx

The function can be integrated now by applying the following substitutions,

u = xn

x =
u

n

du = ndx

dx =
1

n
du

Now the integral becomes∫ ∞
0

∞∑
n=1

xe−xn dx =

∞∑
n=1

∫ ∞
0

ue−u

n2
du

Factor out 1
n2 out of the integral,∫ ∞

0

∞∑
n=1

xe−xn dx =

∞∑
n=1

1

n2

∫ ∞
0

ue−u du

One can recognize the gamma function Γ(s) represented as

Γ(z) =

∫ ∞
0

xz−1e−x dx

for all numbers with a real part greater than 0. If z is set equal to 2, then Γ(2)
is shown by

Γ(2) =

∫ ∞
0

xe−x dx

Returning to the previous integral, it can be written now as∫ ∞
0

∞∑
n=1

xe−xn dx =

∞∑
n=1

1

n2
Γ(2)
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And considering that Γ(z) = (z − 1)!, then Γ(2) = 1! = 1. Then,∫ ∞
0

∞∑
n=1

xe−xn dx =

∞∑
n=1

1

n2

The infinite series and product expansions of the sine function may be
brought up,

sin z = z

∞∏
n=1

(
1− z2

n2π2

)

sin z =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!

Expanding them, one gets

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

sin z = z

(
1− z2

π2

)(
1− z2

(2π)2

)(
1− z2

(3π)2

)
(· · ·)

sin z =

(
z − 1

π2
z3
)(

1− z2

(2π)2

)(
1− z2

(3π)2

)
(· · ·)

sin z =

(
z +

(
− 1

π2
− 1

(2π)2

)
z3 +

1

(2π2)2
z5
)(

1− z2

(3π)2

)
(· · ·)

sin z =

(
z +

(
− 1

π2
− 1

(2π)2
− 1

(3π)2
− · · ·

)
z3 + (· · ·) z5 + (· · ·) z7 + · · ·

)
From this one can set the following equal,(

− 1

π2
− 1

(2π)2
− 1

(3π)2
− · · ·

)
z3 = −z

3

3!

or simply

−
∞∑

n=1

z3

(nπ)2
= −z

3

3!

Divide both sides by −z3,
∞∑

n=1

1

(nπ)2
=

1

3!

3! = 6, and so
∞∑

n=1

1

(nπ)2
=

1

6

Multiply both sides by π2,
∞∑

n=1

1

n2
=
π2

6
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Thus it has been proven that∫ ∞
0

x

ex − 1
dx =

π2

6

and therefore

ζ(2) =
π2

6
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