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Let one consider the Riemann zeta function ((z), with a given integral iden-

tity,
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In the case where z = 2, one can evaluate the zeta function of 2 by substituting
2 for z in the integrand,
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To evaluate the integral, the property of geometric series can be shown,
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The denominator of the integrand is the term e* — 1. In order to turn the
e” term to 1 and the -1 term to something else, it can be multiplied by e™".
However, the numerator x of the integrand has to be multiplied by e™* as well
in order for the integral expressions to be equal. Thus one has
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Looking back to the property of geometric series, a can be set as a = xe %,
and r as r = e~ . And because [e”*| < 1 from 0 to infinity, it allows to do the

following,
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which simplifies to

which simplifies to




In this power series, it can be stated that e=*"

will decrease at a much greater
rate than x will increase, and thus for any real number = the infinite series
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will uniformly converge. Taking this into account with the derived integral, one

is allowed to switch the integral and summation signs under the condition that
the series has a pointwise convergence,
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The function can be integrated now by applying the following substitutions,
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Now the integral becomes
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Factor out # out of the integral,
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One can recognize the gamma function I'(s) represented as
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for all numbers with a real part greater than 0. If z is set equal to 2, then I'(2)
is shown by
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Returning to the previous integral, it can be written now as
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And considering that I'(z) = (z — 1)!, then T'(2) = 1! = 1. Then,
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The infinite series and product expansions of the sine function may be

brought up,
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Expanding them, one gets
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or simply

Divide both sides by —z3,

3! =6, and so

Multiply both sides by 72



Thus it has been proven that

and therefore




