Pérdidas de energía por fricción

Universidad La Gran Colombia
Facultad de Ingeniería Civil
Laboratorio de Hidráulica
Estudiante: Juan Carlos Toledo Aragón
Profesor: Ing. Edgar O. Ladino M., MSc.
Septiembre 7 de 2017

I. OBJETIVOS

II. MARCO TEÓRICO

II-A. Flujo crítico

El Número de Froude relaciona la velocidad, los parámetros geométricos de la sección y los efectos gravitacionales. La profundidad crítica del flujo está definida como como la condición para la cual el Número de Froude (NF) es igual a 1, donde la energía específica es mínima. Sí el NF es menor a 1 se establece un flujo subcrítico. El flujo supercrítico se origina para NF mayores a 1............

Ejemplo ecuaciones: Continuidad,

$$\frac{\partial}{\partial t}(\rho) + \nabla \cdot (\rho \overrightarrow{v}) = 0 \tag{1}$$

Moméntum,

$$\frac{\partial}{\partial t} (\rho \overrightarrow{v}) + \nabla \cdot (\overrightarrow{v} \overrightarrow{v}) = \\ -\nabla p - \nabla \cdot [\mu (\nabla \overrightarrow{v} + \nabla (\overrightarrow{v})^T)] + \rho \overrightarrow{g} + \overrightarrow{F}$$
 (2)

Presión,

$$\frac{\overline{p}}{\rho}$$
 (3)

Donde, ρ : Densidad del fluido; \overrightarrow{v} : Velocidad; p: Presión; μ : Viscosidad del fluido; \overrightarrow{g} : Aceleración por gravedad; y \overrightarrow{F} : Fuerza del cuerpo.

II-B. Flujo uniforme

II-C.

II-D.

III. DISEÑO EXPERIMENTAL

III-A. Materiales

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

III-B. Magnitudes físicas a medir

-

III-C. Procedimiento

La metodología utilizada en este trabajo se divide en las siguientes fases:.....

1.

2.

3.

4.

5.

6.7.

8.

9. 10.

III-D. Ejemplo imagen

Figura 1. Canal rectangular. Fuente: Propia

IV. RESULTADOS

Cuadro I Parámetros calidad de malla

msnm	#Nodos	Aspect	Skewness	Orthogonal
704.0	147,088	3.5266	0.1241	0.9557
706.9	144,345	4.2965	0.1254	0.9697
709.4	129,572	4.2442	0.1285	0.9558
712.0	127,812	4.1577	0.1271	0.9523
724.6	141,766	4.3370	0.1479	0.9946

Ejemplo gráfica:

IV-A.

V[V]	I[A]
0.87 ± 0.03	0.73 ± 0.01
0.83 ± 0.03	0.65 ± 0.01
$0,60 \pm 0,03$	$0,50 \pm 0,01$
0.52 ± 0.03	$0,42 \pm 0,01$

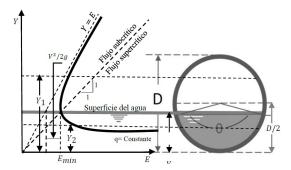


Figura 2. Energía específica canal circular. Fuente: Propia.

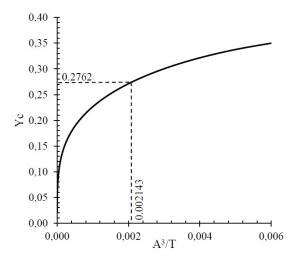


Figura 3. Tubería circular, (solución gráfica). Fuente: Propia

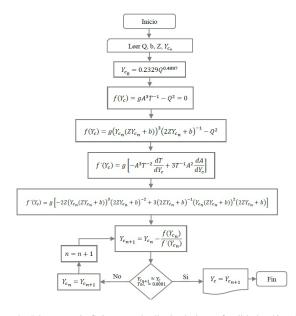


Figura 4. Diagrama de flujo para el cálculo de la profundidad crítica (canal trapezoidal), Fuente: Propia.

V. DISCUSIÓN DE RESULTADOS

l coeficiente de fricción es un parámetro adimensional defini- do como la relación de la tensión de corte de la pared y

la presión dinámica de referencia. ANSYS Fluent, determina el coeficiente de fricción con base en la densidad y la velocidad de referencia. La distribución del coeficiente de fricción sobre la pared de la gola muestra que para la relación $\mathrm{H}/H_D=0.5$ el menor valor se establece en $\mathrm{X=0.15}H_D$ correspondiente a Cf= 0.25, de igual forma, para la relación $\mathrm{H}/H_D=1.33$, se indica un Cf= 0.62 en $\mathrm{X=-0.02}H_D$, esto se experimenta instantes antes de la entrada del flujo a la compuerta, una vez el fluido supera el paso por la compuerta el coeficiente de fricción aumenta a 2.82 en la posición $0.325H_D$. De igual forma que el......

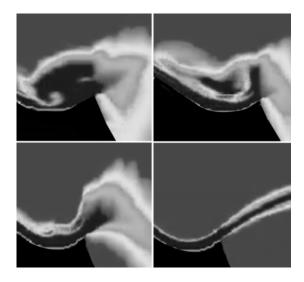


Figura 5. Perfil de la napa en la gola. Apertura: 704 msnm; Caudal: 290 lps (CMP).Fuente: Propia

VI. CONCLUSIONES

El algoritmo desarrollado bajo código fuente de JavaS-cript para la aplicación "Sistema de Tuberías en Serie. Series Piping System", demostró su capacidad de cálculo, para determinar el caudal bajo el modelo propuesto por Darcy-Weisbach para perdidas de carga y Colebrook-White para el coeficiente de fricción. La aceleración de la convergencia en el proceso iterativo se obtuvo a partir de un valor semilla para las pérdidas por fricción, el cual relaciona las longitudes de las tuberías del sistema y los diámetros.......

VII. BIBLIOGRAFÍA

Arturo Duarte, J. N. (2004). Introducción a la Mecánica de Fluidos. Bogotá D. C.: Universidad Nacional de Colombia.

Barraza, J. P. (2007). Estudio comparativo de modelos numéricos para el seguimiento de Interfaces móviles: estudio del derrame de una columna de líquido. Revista chilena de ingeniería, 65.

Chadwick, A. a. (1986). Hydraulics in Civil Engineering. Allen - Unwin, 406.

Chaiyuth Chinnarasri, D. Kositgittiwong, Pierre Y. Julien (2012), Numerical simulation of flow velocity profiles along

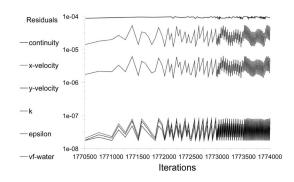


Figura 6. Perfil de la napa en la gola. Apertura: 704 msnm; Caudal: 290 lps (CMP).Fuente: Propia

a stepped spillway, King Mongkut's University of Technology T., 5.

Chow, V. T. (1994). Hidráulica de canales abiertos. Bogotá D. C.: McGraw Hill.

Chull, J. (2006). Interactions, Fluid-Structure . Korea: Korea Institute of Nuclear Safety.