Polynomials with infinite solutions

Rahul Chhabra
St. Joseph's College, Prayagraj, Uttar Pradesh, India

Abstract

A solution to any polynomial $P(x)$ is a value of x that satisfies $P(x)=0$. A polynomial of degree 1 forms an equation called a "linear" equation. A linear equation can be expressed as $a x+b=0$. Its solution is then :

$$
x=\frac{-b}{a}
$$

For polynomials of degree 2 , things go a little complicated :

$$
P(x)=a x^{2}+b x+c
$$

Nonetheless, a quadratic equation can be solved rather easily with the help of the quadratic formula :

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Cubics and quartics each have 3 and 4 roots respectively. Overall, any polynomial of degree n has exactly n solutions or roots. But can there be a polynomial equation which has infinite solutions? As it turns out - yes.
Keywords: Polynomial, solution, degree of a polynomial, linear, quadratic, quadratic formula, roots, cubics, quartics

1. The null polynomial

In general, any polynomial can be expressed as :

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{i} x^{i}
$$

The null polynomial is a polynomial that returns 0 for any value of $x . ~ P(x)=$ 0 It can be understood better as a polynomial with every coefficient equal to 0 :

$$
P(x)=0+0 x+0 x^{2}+\ldots+0 x^{i}
$$

It will return 0 no matter what. Since it returns 0 for any given value of x, it has infinite solutions.[1]

2. A polynomial of degree infinity

Most of the time when we consider polynomials, we consider the degree to be finite. However, there are instances when a polynomial can be thought of as having an infinite degree. Like a power series. One prime example is of a Taylor series.[2]

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

A Taylor series is defined to be infinite. It is called a Maclaurin series when $a=0$.

3. Roots of a degree infinity polynomial

By the fundamental theorem of algebra, we know that a degree n polynomial's equation has n roots. Therefore, a polynomial of degree ∞ has ∞ solutions.

Given a polynomial $P(x)$, let us assume that it has a solution set S. Let us also assume that the solution set is finite, i.e., there are a finite number of solutions for $P(x)$. Now, let us take n to be the largest root in S. Since it is a root,

$$
\begin{gather*}
P(n)=0 \\
a_{0}+a_{1} n+a_{2} n^{2}+\ldots=0 \tag{1}
\end{gather*}
$$

Let us also take any other arbitrary m. Now, let us see if $m+n$ is a root of $P(x)$.

$$
\begin{array}{r}
a_{0}+a_{1}(n+m)+a_{2}(n+m)^{2}+\ldots=0 \\
a_{0}+a_{1} n+a_{1} m+a_{2}\left(n^{2}+2 m n+m^{2}\right)+\ldots=0 \\
a_{0}+a_{1} n+a_{1} m+a_{2} n^{2}+a_{2} m^{2}+2 a_{2} m n+\ldots=0
\end{array}
$$

We see that simplifying produces $a_{i} n^{i}+a_{i} m^{i}$ along with all the intermediate terms of a bionomial expansion of the form $(a \pm b)^{n}$. Let the sum of all these intermediate terms be T_{m+n}.

Now,

$$
\begin{array}{r}
a_{1} n+a_{1} m+a_{2} n^{2}+a_{2} m^{2}+\ldots+T_{m+n}=0 \\
\left(a_{1} n+a_{2} n^{2}+\ldots\right)+\left(a_{1} m+a_{2} m^{2}+\ldots\right)+T_{m+n}=0
\end{array}
$$

But from 1,

$$
\begin{equation*}
\left(a_{1} m+a_{2} m^{2}+\ldots\right)+T_{m+n}=0 \tag{2}
\end{equation*}
$$

Since it is possible for the expression 2 ,

$$
P(m+n)=0
$$

But n is by definition, the largest root, then, by contradiction, the solution set S has to be infinite. Therefore, in this case,there are infinite solutions to the polynomial $P(x)$.

But what if there is no value of m that satisfies $T_{m+n}=0$? Then, in that case, the solution set can be thought of as not having as many elements as the degree of the polynomial. Just like how

$$
x^{2}+1-2 x=0
$$

Has one solution $x=1$. The solution set for this quadratic would be $\{1\}$. Here, there are two roots - but they are both equal. The case when m does not exist would also be similar. In other words, the infinity of the solution set $\left(\infty_{S}\right)$ would be smaller than or equal to the infinity of the degree of the polynomial $\left(\infty_{P}\right)$, for any given infinite polynomial. Or,

$$
\begin{equation*}
\infty_{S} \leqslant \infty_{P} \tag{3}
\end{equation*}
$$

4. Such equations in action

Here are a few examples :

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

This is the Taylor series for the $\sin (x)$ function. It is how your calculator get the value when you feed x to it.

A note on other fields

A field is a set on which the binary operations,,$+- \times$ and \div are defined. Besides integral fields, there are other fields where polynomials will behave differently and a polynomial with finite terms and of a finite degree can also have infinite solutions.

Bibliography

[1] M. B. (https://math.stackexchange.com/users/174927/milo brandt), Is there a polynomial that has infinitely many roots?, Mathematics Stack Exchange, ???? URL:https://math.stackexchange.com/q/1137202 (version: 2015-02-07).
[2] S. S. (https://www.quora.com/profile/Senia Sheydvasser), In a polynomial of degree n why can't n be infinity?, Quora, ???? URL:https://www.quora.com/In-a-polynomial-of-degree-n-why-cant-n-be-infinity/answer/Senia-Sheydvasser (version: 2016-01-19).

