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T
he following collection represents an ex-
cerpt of the statistics formulae taken
from the perennial text book Lind,

Douglas A. et. al. (2015): Statistical Tech-
niques in Business and Economics, Sixteenth
edition, New York, NY 2015.

Frequency distributions

(1)

Constructing frequency distributions where k is the smallest
number of classes and n the number of observations:

1. decide on the number of classes k where 2k > n

2. determine the class interval i by i ≥ max value - min value
k

3. set individual class limits.

4. tally the values into the classes.

5. count the number of items in each class.

Population mean (raw data)

µ =

∑
x

N
(2)

where:

• µ denotes the population mean.

• x denotes any value.

• N denotes the number of the values in the population.

Sample mean

x̄ =

∑
x

n
(3)

where:

• x̄ denotes the sample mean.

• n denotes the number of values in the sample.

• x denotes any value.

median
(4)

The midpoint of the values after they have been ordered from
the minimum to the maximum values. The data must be at
least an ordinal level of measurement.

mode
(5)

The value of the observation that appears most frequently. It
is especially useful in summarizing ordinal level data.

Weighted mean

x̄w =
w1x1 + w2x2 + · · ·+ wnxn

w1 + w2 + · · ·+ wn
=

n∑
i=1

wixi

n∑
i=1

wi

(6)

where:

• x̄w denotes the weighted mean.

• w denotes the corresponding weight.

Geometric mean

Geometric mean = n
√

(x1)(x2) · · · (xn) (7)

Note:
Useful in finding the average change – in contrast to equation
(8) – of percentages, ratios, indices or growth rates over time.
The geometric mean will always be less than or equal (never
more than) the arithmetic mean. Also, all the data values
must be positive. It is applied in Fisher’s Ideal Index as in
formula (111).

Geometric mean for a rate increase over time

GM for a rate increase = n

√
value at end of period

value at start of period
−1 (8)

Used to find an average percentage increase (in contrast to
(7)) over time.

Range

Range = maximum value−minimum value (9)

Population variance

σ2 =

∑
(x− µ)2

N
(10)

Note: The population variance σ2 in essence mitigates the
dilemma of a single sample. In the first sample the deviation
between observed value x and the population mean µ might
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differ to a great extent, in a second sample the deviation might
well be very different again. Here, σ2 provides a measure for
the average variance accounting for all samples for one unit of
the population.

where:

• σ2 is the population variance.

• x is the value of a particular observation in the popula-
tion.

• µ is the arithmetic mean of the population.

• N is the number of observations in the population.

Population standard deviation

σ =

√∑
(x− µ)2

N
(11)

Note: The population standard deviation σ in essence mit-
igates the dilemma of a single sample (ref. (10) . In the
first sample the deviation between observed value x and the
population mean µ might differ to a great extent, in a second
sample the deviation might well be very different again. Here,
σ provides a measure for the average deviation accounting for
all samples for one unit of the population in the same unit of
measure as in the sample.

where:

• σ is the population standard deviation.

• x is the value of a particular observation in the popula-
tion.

• µ is the arithmetic mean of the population.

• N is the number of observations in the population. By
taking the square root of the variance the deviation is
now of the same unit of measurement as the original
data.

Sample variance

s2 =

∑
(x− x̄)2

n− 1
(12)

where:

• s2 is the sample variance.

• x is the value of a each observation in the sample.

• x̄ is the mean of the sample.

• n is the number of observations in the sample.

• The denominator (n− 1) corrects its tendency for under-
estimation.

Sample standard deviation

s =

√∑
(x− x̄)2

n− 1
(13)

where:

• s is the sample standard deviation.

• x is the value of a each observation in the sample.

• x̄ is the mean of the sample.

• n is the number of observations in the sample.

• By taking the square root of the variance the deviation
is now of the same unit of measurement as the original
data.

Chebyshev’s Theorem
(14)

Chebyshev’s Theorem
For any set of observations (sample or population), the pro-
portion of the values that lie within k standard deviations of
the mean is at least 1− 1

k2
, where k is any value greater than

1.

Arithmetic mean of grouped data

x̄ =

∑
fM

n
(15)

where:

• x̄ is the sample mean.

• M is the midpoint of each class.

• f is the frequency in each class.

• n is the total number of frequencies.

Standard deviation of grouped data

s =

√∑
f(M − x̄)2

n− 1
(16)

where:

• s is the sample standard deviation.

• M is the midpoint of the class.

• f is the the class frequency.

• x̄ is the mean of the sample.

• n is the number of observations in the sample.

Location of percentile

Lp = (n+ 1)
P

100
(17)

where:

• P is the percentile.

• n is the number of observations.

• Lp is the location of the percentile.

Coefficient of Variation1

CV =
s

x̄
(100) (18)

Note: multiplying by 100 converts the decimal to a percent
where:

• s is the sample standard deviation.

• x̄ is the sample mean.

Pearson’s coefficient of skewness

sk =
3(x̄−median)

s
(19)

where:

• s is the sample standard deviation.

• x̄ is the sample mean.

1(Lind et al., 2002, ISBN 0-07-112318-0, p. 115)
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Software coefficient of skewness

sk =
n

(n− 1)(n− 2)

[
Σ(
x− x̄
s

)3
]

(20)

where:

• n is the number of observation in the sample.

• s is the sample standard deviation.

• x̄ is the sample mean.

Classical probability

Probability of an event =
Number of favorable outcomes

Total number of possible outcomes
(21)

Empirical probability

Probability of an event =
Number of times event occurred in the past

Total number of observations
(22)

Special Rule of Addition

P(A or B) = P (A) + P (B) (23)

Events must be mutually exclusive.

Complement Rule

P (A) = 1− P (∼ A) (24)

Events A and ∼A are mutually exclusive and collectively
exhaustive.

General Rule of Addition

P(A or B) = P(A) + P(B) - P(A and B) (25)

Events that are not mutually exclusive.

Special Rule of Multiplication

P(A and B) = P(A)P(B) (26)

Requires that two events are independent, that is, the oc-
currence of one event has no effect on the probability of the
occurrence of the other event.

General Rule of Multiplication

P(A and B) = P(A)P (B|A) (27)

where:

• P(B|A) stands for the probability of B will occur given
that A has already occurred (conditional probability).

• two events are not independent.

Bayes’ Theorem

P (Ai|B) =
P (Ai)P (B|Ai)

P (A1)P (B|A1) + P (A2)P (B|A2)
(28)

Events A1 and A2 are mutually exclusive and collectively
exhaustive, and Ai refers to either event A1orA2.

Multiplication Formula

Total number of arrangements = (m)(n) (29)

Permutation

nPr =
n!

(n− r)! (30)

Any arrangement of r objects selected from a single group of
n possible objects.

Combination Formula

nCr =
n!

r!(n− r)! (31)

The order of the selected objects is not important.

Mean of a Probability Distribution

µ = Σ [xP (x)] (32)

where:

• µ is the population mean.

• P (x) is the probability.

• x is a particular value.

Variance of a Probability Distribution

σ2 = Σ
[
(x− µ)2P (x)

]
(33)

where:

• µ is the mean.

• P (x) is the probability.

• x is a particular value.

Binomial Probability Distribution (with replacement)

P (x) = nCxπ
x(1− π)n−x (34)

where:

• C denotes a combination.

• n is the number of trials.

• x is the number of successes.

• π is the probability of a success on each trial.

Mean of a Binomial Distribution (with replacement)

µ = nπ (35)

where:

• µ is the probability mean.

• n is the number of trials.

• π is the probability of a success on each trial.

The formula is identical to (39).

Variance of a Binomial Distribution (with replace-
ment)

σ2 = nπ(1− π) (36)

where:

• n is the total number of trials.
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• π is the probability of a success on each trial.

Hypergeometric Distribution (without replacement)

P (x) =
(SCx)(CN−Sn−x )

NCn
(37)

where:

• N is the size of the population.

• S is the number of successes in the population.

• x is the number of successes in the sample. It may be 0,
1, 2, 3, ...

• n is the size of the sample or the number of trials.

• C stands for a combination.

Poisson Distribution

P (x) =
µxe−µ

x!
(38)

where:

• µ is the mean number of occurrences (successes) in a
particular interval.

• e is the constant 2.71828 (base of the Naperian logarith-
mic system).

• x is the number of occurrences (successes).

• P (x) is the probability for a specified value of x.

Mean of a Poisson Distribution

µ = nπ (39)

where:

• π is the probability of success.

• n is the number of trials.

• n is the total number of trials.

The formula is identical to (35).

Mean of the Uniform Distribution

µ =
a+ b

2
(40)

where:

• µ is mean.

Standard Deviation of the Uniform Distribution

σ =

√
(b− a)2

12
(41)

where:

• µ is the mean.

• a is minimum value of the interval.

• b is maximum value of the interval.

Uniform Distribution Probability

P (x) = (height)(base) =
1

b− a (b− a) (42)

where:

• if a ≤ x ≥ b and 0 elsewhere.

• µ is the mean.

• a is minimum value of the interval.

• b is maximum value of the interval.

Normal Probability Distribution

P (x) =
1

σ
√

2π
e
−
[
(x−µ)2

2σ2

]
(43)

where:

• σ refers to the standard deviation.

• µ refers to the mean.

• e is a constant, respectively, the base of the natural log
system and approximately equals to 2.718.

• π a constant with an approximate value of 22
7

or 3.1416.

• x refers to the value of the random variable.

Standard Normal Value (One Observation - σ Known)

z =
x− µ
σ

(44)

Notice an important difference to equation (49). Whereas
equation (49) uses the sample mean x̄, the population mean
µ, and the sample standard deviation σ√

n
, this formula is

used in cases where the z value for only one observation is
calculated.

where:

• z denotes the signed distance between a selected value
x and the population mean µ divided by the population
standard deviation σ.

• x is the value of any particular observation or measure-
ment.

• µ is the mean of the distribution.

• σ is the standard deviation of the distribution.

Continuity Correction Factor

If for P (x) ≥ x then use (x− 0.5)

If for P (x) > x then use (x+ 0.5)

If for P (x) ≤ x then use (x+ 0.5)

If for P (x) < x then use (x− 0.5)

(45)

The value 0.5 is subtracted or added to a selected value when
a discrete probability distribution is approximated by a con-
tinuous probability distribution.

Exponential Distribution

P (x) = λe−λx (46)

where:

• λ refers to the rate parameter and λ = 1
µ

or µ = 1
λ

• e is a constant, respectively, the base of the natural log
system and approximately equals to 2.718.

• x refers to the value of the random variable.

• Both the mean (µ) and the standard deviation (σ) are
equal to 1

λ
.
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Probability of Exponential Distribution

P (arrival time < x) = 1− e−λx (47)

where:

• λ refers to the rate parameter.

• e is a constant, respectively, the base of the natural log
system and approximately equals to 2.718.

• x refers to the value of the random variable.

• Both the mean (µ) and the standard deviation (σ) are
equal to 1

λ
.

Standard Error of the Mean

σx̄ =
σ√
n

(48)

where:

• σx̄ refers standard deviation of the sample means indi-
cated by x̄.

• n refers to the sample size.

• σ refers to the population standard deviation.

Standard Normal Value (More than One Observation
- σ known)

z =
x̄− µ
σ√
n

(49)

Notice an important difference to equation (44). Whereas
equation (44) uses the random variable x, the population mean
µ, and the population standard deviation σ, this formula is
used in cases where the research refers to a sample rather
than to just one observation.

where:

• z refers to the distance between a selected value, des-
ignated x̄, and the population mean µ divided by the
standard error of the mean σ√

n
as in formula (48).

• x̄ refers to the sample mean.

• µ refers to the population mean.

• σ refers to the population standard deviation.

• n refers to the sample size.

Confidence Interval for a Population Mean (σ Known)

x̄± z σ√
n

(50)

where:

• z the standardized distance from the mean µ.

• x̄ refers for the population standard deviation.

• σ refers to the population standard deviation.

• n refers to the sample size.

Confidence Interval for a Population Mean (σ Un-
known)

x̄± t s√
n

(51)

where:

• t refers to the t distribution.

• x̄ refers for the population standard deviation.

• s refers to the sample standard deviation.

• n refers to the sample size.

Sample Proportion

p =
x

n
(52)

where:

• p refers to the sample proportion.

• x refers for the number of successes.

• n refers to the sample size.

Confidence Interval for a Population Proportion

p± z
√
p(1− p)

n
(53)

where:

• p refers to the sample proportion which is an estimate
for the population proportion π.

• z refers for the standard distance from the mean µ.

• n refers to the sample size.

Sample Size for Estimating the Population Mean

E = z
σ√
n

solved for n yields n = (
zσ

E
)2 (54)

where:

• n refers to the sample size.

• z refers for the standard distance from the mean µ.

• σ refers to the population standard deviation.

• E is the maximum allowable error.

Sample Size for the Population Proportion

E = z

√
π(1− π)

n
solved for n yields n = π(1− π)(

z

E
)2

(55)
where:

• n is the size of the sample.

• z is the standard normal value corresponding to the
desired level of confidence.

• π is the population proportion.

• E is the maximum allowable error.

Finite-Population Correction Factor

FPC =

√
N − n
N − 1

(56)

To be used if the sample is a significant part of a finite popu-
lation. where:

• n is the size of the sample.

• N is the size of the population.
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Testing a Mean (σ Known)

z =
x̄− µ
σ√
n

(57)

Refer to equation (49) that computes a z value on the basis
of a sample.
The z value is based on the sampling distribution of the sample
mean x̄, which follows the normal distribution with the sam-
pling mean µx̄ equal to the population mean µ and a standard
error of the mean σx̄, with is equal to σ√

n
.

where:

• z refers to the distance between a selected value, desig-
nated x̄, and the mean µ divided by the standard error
of the mean σ√

n
as in formula (48).

• x̄ refers for the sample mean.

• µ refers to the population mean.

• σ refers to the population standard deviation.

• n refers to the sample size.

Testing a Mean (σ Unknown)

t =
x̄− µ
s√
n

(58)

with n− 1 degrees of freedom where:

• x̄ is the sample mean.

• µ is the hypothesized population mean.

• s is the sample standard deviation.

• n is the number of observations in the sample.

Type II Error

z =
x̄C − µ1

σ√
n

(59)

Refer to equation (49) that computes a z value on the basis
of a sample.
where:

• x̄C is the sample mean of region C.

• µ1 is the hypothesized population mean of region C.

• σ is the population standard deviation.

• n is the number of observations in the sample.

Two-Sample Test – Variance of the Distribution of
Differences (σ Known)

σ2
x̄1−x̄2 =

σ2
1

n1
+
σ2

2

n2
(60)

where:

• σ2
x̄1−x̄2 is variance of the differences in means.

• x̄1 and x̄2 are the sample means of the first and second
sample, respectively.

• n1 and n2 are the sample sizes.

Two-Sample Test – Test of Means (σ Known)

z =
x̄1 − x̄2√
σ2
1
n1

+
σ2
2
n2

(61)

Note: above formula refers to formula (62). Using it stipulates
the following2:

2Lind et al., p. 351

1. the sampled populations are approximately normally
distributed.

2. the sampled populations are independent.

3. the standard deviations of the two populations are
known.

where:

• z refers to the standard value.

• x̄ refers for the sample mean.

• σ2 refers to the population variance.

• n refers to the sample size.

Two-Sample Test – Pooled Variance (σ Unknown)

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(62)

Note: using the pooled variance formula assumes following
important assumptions for the test.

1. the sampled populations are approximately normally
distributed.

2. the sampled populations are independent.

3. the standard deviations of the two populations are equal.

In essence, the formula computes a weighted mean of the two
sample standard deviations using the degrees of freedom that
each sample provides. The resulting value serves then as an
estimate for the unknown population standard deviation. The
reason for pooling arises from the assumption that the two
populations have equal standard deviations and best estimate
we can make of that value is to combine or pool all the sample
information we have about the value of the population standard
deviation. In contrast, formula (67) assumes related or paired
samples. If such an assumption is reasonable the resulting
hypothesis test is much more sensitive to detecting a significant
difference than a hypothesis test based on independent samples
compared to independent samples since we are able to reduce
the variation in the sampling distribution3.

where:

• s2
p is pooled variance. Further used in equation (63) due

to the assumption in that the two populations sampled
have the same standard deviations.

• s2
1 is the variance of the first sample.

• s2
2 is the variance of the second sample.

• n1 is the sample size of the first sample.

• n2 is the sample size of the second sample.

• n1 + n2 − 2 is the degree of freedom usually denoted as
df .

Two-Sample Test – Test of Means (σ Unknown)

t =
x̄1 − x̄2√
s2
p(

1
n1

+ 1
n2

)
(63)

Note: the pooled variance s2
p is to be computed using equation

(62) beforehand. Therefore the same prerequisite applies here:

1. the sampled populations are approximately normally
distributed.

2. the sampled populations are independent.

3Lind et al., p. 368
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3. the standard deviations of the two populations are equal.

Note: the Wilcoxon rank-sum test (ref. formula (102))
is an alternative to the Two-Sample t test. While the Two-
Sample t test requires two populations follow the normal distri-
bution and have equal population variances, these prerequisites
do not apply for the Wilcoxon rank-sum test.

where:

• x̄1 is the mean of the first sample.

• x̄2 is the mean of the second sample.

• n1 is the number of observations in the first sample.

• n2 is the number of observations in the second sample.

• s2
p is the pooled estimate of the population variance.

Two-Sample Test – Test Statistic for No Difference in
Means, Unequal Variances (σ Unknown)

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

(64)

Note: this equation differs only in one aspect from equation
(63) in that the pooled variance s2

p could be used due to the
assumption that both sample variances are equal. Since this
formula assumes that both sample variances are unequal the
denominator now splits into two components using s2

1 and s2
2

as variances.
where:

• x̄1 is the mean of the first sample.

• x̄2 is the mean of the second sample.

• s2
1 is sample variance of the first sample.

• s2
2 is sample variance of the second sample.

• n1 is the number of observations in the first sample.

• n2 is the number of observations in the second sample.

Two-Sample Test – Degrees of Freedom for Unequal
Variance Test (σ Unknown)

df =

[
s21
n1

+
s22
n2

]2
(
s21
n1

)2

n1−1
+

(
s22
n2

)2

n2−1

(65)

where:

• df is the degree of freedom.

• s2
1 is sample variance of the first sample.

• s2
2 is sample variance of the second sample.

• n1 is the number of observations in the first sample.

• n2 is the number of observations in the second sample.

Two-Sample Test – Standard Deviation of Differences

sd =

√∑
(d− d̄)2

n− 1
(66)

where:

• d̄ is the mean of the difference between the paired or
related observations.

• sd is the standard deviation of the differences between
the paired or related observations.

• n is the number of paired observations.

Two-Sample Test – Paired t Test

t =
d̄
sd√
n

(67)

Note: whereas formula (62) assumes independent samples and
thus incurs a much greater variation through the process of
pooling, tests from paired samples allow to greatly reduce the
variation from the sampling distribution. Also note the possible
disadvantage that the degrees of freedom for paired samples
are usually lower than their independent counterparts4.

Note: An alternative to test with dependent samples is the
Wilcoxon signed-rank test. For this test the normality
assumption is not required.

There are n− 1 degrees of freedom and

• d̄ is the mean of the difference between the paired or
related observations.

• sd is the standard deviation of the differences between
the paired of related observations.

• n is the number of paired observations.

ANOVA – Test Statistic for Comparing Two Vari-
ances

F =
s2

1

s2
2

(68)

where:

• s2
1 is the sample variance of the first sample.

• s2
1 is the sample variance of the second sample.

• F represents the F distribution.

If the null hypothesis is true, the test statistic follows the F
distribution with n1 − 1 and n2 − 1 degrees of freedom.

ANOVA – Critical Value for F Statistic

F =
k − 1

n− k (69)

where:

• F represents the F distribution.

• k is the number of treatments.

• n is the total number of observations.

In ANOVA the critical value of the F statistic decides whether
the null hypothesis H0 can be rejected.

ANOVA – Components

The sum of the squared differences between (a) and (b) defines
(c):

(70)

and

(a) (b) (c) ANOVA term

each observation overall mean total variation
each treatment mean overall mean treatment variation
each observation treatment mean random variation

Note: to use the ANOVA test the following assumptions need
to be met:

4Lind et al., p. 369
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• The samples are from independent populations.

• The population variances must be equal.

• The samples are from normal populations.

If these assumptions are not reasonable the Kruskal-Wallis
nonparametric test as in formula (103) is advisable.

ANOVA: One-Way – Table

ANOVA Table (One-Way) (71)

where:

ANOVA

source of variation SS df mean square F

treatments SST k − 1 SST
(k−1)

= MST MST
MSE

error SSE n− k SSE
(n−k)

= MSE

total SS total n− 1

• n denotes the total number of observations.

• k denotes the number of treatments.

• SS denotes the sum of squares.

• SST denotes the sum of squares due to treatments. It is
the sum of the squared differences each treatment mean
x̄C and the overall mean x̄G. It can also be calculated
as the difference of SS total− SSE.

• SSE denotes the sum of squares due to errors (random
error). It is calculated by SSE =

∑
(x− x̄C)2 with x̄C

being the sample mean for treatment C.

• SS total denotes the total variation. It is SS total =∑
(x− x̄G)2 with x being each sample observation and

x̄G being the overall mean.

• MST denotes mean square for treatments. Mean square
is another term for an estimate of variance.

• MSE denotes mean square for errors.

ANOVA: Confidence Interval for the Difference in
Treatment Means

(x̄1 − x̄2)± t

√
MSE

(
1

n1
+

1

n2

)
(72)

where:

• x̄1 is the mean of the first sample.

• x̄2 is the mean of the second sample.

• t refers to the t distribution with degrees of freedom
equal to n− k.

• MSE is the mean square error term obtained from the

ANOVA table
[
SSE
n−k

]
.

• n1 is the number of observations in the first sample.

• n2 is the number of observations in the second sample.

ANOVA: Two-Way – Sum of Squares Blocks

SSB = k
∑

(x̄b − x̄G)2 (73)

where:

• k is the number of treatments.

• b is the number of blocks.

• x̄b refers to the sample mean of block b.

• x̄G is the overall mean.
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ANOVA: Two-Way – Table

ANOVA Table (Two-Way) (74)

ANOVA

source of variation SS df mean square F

treatments SST k − 1 SST
(k−1)

= MST MST
MSE

blocks SSB b− 1 SSB
(b−1)

= MSB MSB
MSE

error SSE (k − 1)(b− 1) SSE
(k−1)(b−1)

= MSE

total SS total n− 1

where:

• n denotes the total number of observations.

• k denotes the number of treatments.

• SS denotes the sum of squares.

• SST denotes the sum of squares due to treatments. It is
the sum of the squared differences of each treatment mean
x̄C and the overall mean x̄G. It can also be calculated
as the difference of SS total− SSE − SSB.

• SSB denotes the sum of squares blocks. It is calculated
by SSB = k

∑
(x̄b − x̄G)2 with x̄b being the number of

blocks and x̄G being the overall mean.

• SSE denotes the sum of squares due to errors (random
error). It is calculated by SSE =

∑
(x− x̄C)2 with x̄C

being the sample mean for treatment C.

• SS total denotes the total variation. It is SS total =∑
(x− x̄G)2 with x being each sample observation and

x̄G being the overall mean.

• MST denotes mean square for treatments. Mean square
is another term for an estimate of variance.

• MSB denotes mean square blocks.

• MSE denotes mean square for errors.

The following is an illustration how the different variation
relate.

Figure 1: Illustration of a Two-Way ANOVA
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ANOVA: Two-Way with Interaction (Factors) – Table

ANOVA Table with Interaction (Factors) (75)

ANOVA

source of variation SS df mean square F

Factor A SSA k − 1 SSA
(k−1)

= MSA MSA
MSE

Factor B SSB b− 1 SSB
(b−1)

= MSB MSB
MSE

Interaction SSI (k − 1)(b− 1) SSI
[(k−1)(b−1)]

= MSI MSI
MSE

Error SSE n− kb SSE
(n−kb) = MSE

total SS total n− 1
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Linear Regression: Correlation Coefficient

r =

∑
(x− x̄)(y − ȳ)

(n− 1)sxsy
(76)

Subject: A measure of strength of the linear relationship
between two variables. It ranges from −1 up to and including
+1.

Note: The correlation coefficient becomes independent of
the scale used if the term

∑
(x− x̄)(y − ȳ) is divided by the

sample standard deviations sx and sy. Similarly, the term
becomes independent of sample size once divided by (n− 1).

Note: Correlation between two independent variables is
considered uncritical if −0.70 < r < 0.70. A more precise test
provides the variance inflation factor (VIF) as in formula (93).

where:

• r denotes the correlation coefficient.

• x denotes the variable value of the x population.

• y denotes the variable value of the y population.

• x̄ denotes the mean of variable values in the x population.

• ȳ denotes the mean of variable values in the y population.

• n denotes the number of observations in the sample.

• (n− 1) denotes the degree of freedom.

• sx denotes the standard deviation of the x population.

• sy denotes the standard deviation of the y population.

Linear Regression: t Test for the Correlation Coeffi-
cient r

t =
r
√
n− 2√

1− r2
(77)

Subject: Resolves the question about whether there could be
zero correlation in the population from which the sample was
selected.

with n− 2 degrees of freedom where:

• r denotes the correlation coefficient.

• n denotes the number of observations in the sample.

Linear Regression Equation: General Form

ŷ = a+ bx (78)

Subject: An equation that expresses the linear relationship
between two variables.

where:

• ŷ is the estimated value of the y variable for a selected x
value.

• a is the y-intercept. It is the estimated value of Y when
x = 0.

• b is the slope of the line, or the average change in ŷ for
each change of one unit (either increase or decrease) in
the independent variable x.

• x is any value of the independent variable that is selected.

Linear Regression: Slope of Regression Line

b = r(
sy
sx

) (79)

where:

• r denotes the correlation coefficient.

• sy denotes the standard deviation of y (the dependent
variable).

• sx denotes the standard deviation of x (the independent
variable).

Linear Regression: Y-Intercept

a = ȳ − bx̄ (80)

where:

• ȳ is the mean of y (the dependent variable).

• x̄ is the mean of x (the independent variable).

Linear Regression: t Test for the Slope b

t =
b− 0

sb
(81)

Subject: Conducts a test on whether the slope of the regres-
sion line is different from zero. In such a circumstance we
can reasonably conclude that the regression line adds to the
predictive ability of the regression equation.

with n− 2 degrees of freedom where:

• b is the estimate of the regression line’s slope calculated
from the sample information.

• sb is the standard error of the slope estimate, also deter-
mined from sample information.

Linear Regression: Standard Error of Estimate

sy·x =

√∑
(y − ŷ)2

n− 2
=

√
SSE

n− 2
(82)

Subject: It is a relative measure of a regression equation’s
ability to predict.

where:

• sy·x denotes the standard error of estimate with y·x to
be interpreted as the standard error of y for a given value
of x. It is the same concept as the standard deviation
in formula (13) which measures the dispersion around a
mean.

• y denotes the observed value.

• ŷ denotes the predicted value.

•
∑

(y − ŷ)2 denotes the sum of squares error or residuals
referred to in the ANOVA equation (71) as SSE.

Linear Regression: Coefficient of Determination

r2 =
SSR

SS Total
=

∑
(ŷ − ȳ)2∑
(y − ȳ)2

= 1− SSE

SS Total
= 1−

∑
(y − ŷ)2∑
(y − ȳ)2

(83)
Subject: The proportion of the total variation in the depen-
dent variable Y that is explained, or accounted for, by the
variation in the independent variable X.

where:

• SS Total denotes total variation, that is, the sum of
squares total.

• SSR denotes the sum of squares regression.

• SSE denotes the sum of squares errors or residuals, re-
spectively.
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Linear Regression: Confidence Interval for the Mean
of Y given X

ŷ ± tsy·x

√
1

n
+

(x− x̄)2∑
(x− x̄)2

(84)

Subject: Applied when the regression equation is used to
predict the mean value of y for a given value of x

where:

• x denotes the given value.

• x̄ denotes the sample mean.

• ŷ denotes the predicted value.

• sy·x denotes the standard error of estimate with y·x to
be interpreted as the standard error of y for a given value
of x. It is the same concept as the standard deviation
in formula (13) which measures the dispersion around a
mean.

Linear Regression: Prediction Interval for Y given X

ŷ ± tsy·x

√
1 +

1

n
+

(x− x̄)2∑
(x− x̄)2

(85)

Subject: Applied when the regression equation is used to
predict an individual value of y (n = 1) for a given value of x.
Refer to equation (84).

where:

• x denotes the given value.

• x̄ denotes the sample mean.

• ŷ denotes the predicted value.

• sy·x denotes the standard error of estimate with y·x to
be interpreted as the standard error of y for a given value
of x. It is the same concept as the standard deviation
in formula (13) which measures the dispersion around a
mean.

Multiple Regression: General Equation

ŷ = a+ b1x1 + b2x2 + b3x3 + ...bkxk (86)

Subject: Enhanced equation of formula (78) for more than
one dependent variable.

where:

• a is the intercept, the value of ŷ when all the x’s are zero.

• bj is the amount by which ŷ changes when that particular
xj increases by one unit, with the values of all other
independent variables held constant.

• k represents the number of independent variables.

Multiple Regression: Standard Error of Estimate

sy·123·k =

√∑
(y − ŷ)2

n− (k + 1)
=

√
SSE

n− (k + 1)
=
√

MSE (87)

Subject: It is a relative measure of a regression equation’s
ability to predict for more than one independent variable.

where:

• y is the actual observation.

• ŷ is the estimated value computed from the regression
equation.

• n is the number of observations in the sample.

• k is the number of independent variables.

• SSE is the residual sum of squares from an ANOVA
table. It is equal to the term

∑
(y − ŷ)2 as used also in

the ANOVA formula (71).

Multiple Regression ANOVA – Table

Multiple Regression ANOVA Table (88)

ANOVA

source SS df MS F

Regression SSR k MSR = SSR
k

MSR
MSE

Residual or error SSE n− (k + 1) MSE = SSE
n−(k+1)

total SS total n− 1

Multiple Regression: Coefficient of Multiple Determi-
nation

R2 =
SSR

SS Total
(89)

Subject: The percent of variation in the dependent variable,
y, explained by the set of independent variables, x1, x2, x3, ...
xk.

where:

• SS Total denotes total variation, that is, the sum of
squares total.

• SSR denotes the sum of squares regression.

Multiple Regression: Adjusted Coefficient of Multiple
Determination

R2
adj =

SSE
n−(k+1)

SStotal
n−1

(90)

Subject: The percent of variation in the dependent variable,
y, explained by the set of independent variables, x1, x2, x3, ...
xk. As more independent variables are added to the multiple
regression model R2 of formula (89) tends to increase. In fact,
if the number of variables, k, and the sample size, n, are equal,
the coefficient of determination is 1. To avoid this trend R2 is
adjusted.

where:

• SS Total denotes total variation, that is, the sum of
squares total.

• SSE denotes the sum of squares error or residual.

Multiple Regression: Global Test

F =
SSR
k

SSE
n−(k+1)

(91)

Subject: The Global Test investigates whether it is possible
all the independent variables have zero regression coefficients.
As in formula (69) it expresses this as sum of squares regression
per unit of sum of squares residuals. The higher the explained
variances compared to the residual variances, the more positive
the value of the F distribution.

where:

• SSR denotes the sum of squares regression.
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• SSE denotes the sum of squares error or residual.

• n is the number of observations in the sample.

• k is the number of independent variables.

Multiple Regression: t Test Individual Coefficients b

t =
bj − 0

sbj
(92)

Subject: Conducts a test on the independent variables indi-
vidually to determine whether the regression coefficients differ
from zero. If a regression coefficient is likely to be zero it does
not contribute to the regression equation’s ability to predict.

where:

• bj refers to any one of the regression coefficients.

• sb is the standard error of the slope estimate, also deter-
mined from sample information.

Multiple Regression: Variance Inflation Factor

V IF =
1

1−R2
j

(93)

Subject: A VIF greater than 10 is considered unsatisfactory,
indicating that the independent variable should be removed
from the analysis.

where:

• R2
j refers to the coefficient of determination

Test of Hypothesis: One Proportion

z =
p− π√
π(1−π)

n

(94)

where:

• π is the population proportion.

• p is the sample proportion.

• n is the sample size.

Test of Hypothesis: Pooled Proportion

pc =
x1 + x2

n1 + n2
(95)

where:

• pc is the pooled proportion possessing the trait in the
combined samples. It is called the pooled estimate of the
population proportion.

• x1 is the number possessing the trait in the first sample.

• x2 is the number possessing the trait in the second sam-
ple.

• n1 is the number of observations in the first sample.

• n2 is the number of observations in the second sample.

Test of Hypothesis: Two-Sample Test of Proportions

z =
p1 − p2√

pc(1−pc)
n1

+ pc(1−pc)
n2

(96)

where:

• n1 is the number of observations in the first sample.

• n2 is the number of observations in the second sample.

• p1 is the proportion in the first sample possessing the
trait.

• p2 is the proportion in the second sample possessing the
trait.

• pc is the pooled proportion possessing the trait in the
combined samples. It is called the pooled estimate of the
population proportion.

Chi-Square Test Statistic

χ2 =
∑[

(fo − fe)2

fe

]
(97)

with k − 1 degrees of freedom, where:

• k is the number of categories.

• fo is an observed frequency in a particular category.

• fe is an expected frequency in a particular category.

Expected Frequency

fe =
(row total) (column total)

(grand total)
(98)

where:

• fe is an expected frequency in a particular category.

Sign Test: n > 10

z =
(x± .50)− µ

σ
(99)

where:

• z refers to the standard value.

• ±0.50 is the continuity correction factor as in formula
(45).

• x denotes the number of plus (+) or minus (−) signs.

• µ denotes the population mean.

• σ denotes the population standard deviation.

Sign Test: n > 10, + Signs more than n/2

z =
(x− .50)− µ

σ
=

(x− .50)− .50n

.50
√
n

(100)

where:

• z refers to the standard value.

• ±0.50 is the continuity correction factor as in formula
(45).

• x denotes the number of plus (+) or minus (−) signs.

• n denotes the sample size.

• µ denotes the population mean.

• σ denotes the population standard deviation.

Sign Test: n > 10, + Signs less than n/2

z =
(x+ .50)− µ

σ
=

(x+ .50)− .50n

.50
√
n

(101)

where:
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• z refers to the standard value.

• ±0.50 is the continuity correction factor as in formula
(45).

• x denotes the number of plus (+) or minus (−) signs.

• n denotes the sample size.

• µ denotes the population mean.

• σ denotes the population standard deviation.

Wilcoxon Rank-Sum Test

z =
W − n1(n1+n2+1)

2√
n1n2(n1+n2+1)

12

(102)

Subject: this test is specifically designed to determine
whether two independent samples came from equivalent popu-
lations.

Note: this test is an alternative to the Two-Sample t test
as in formula (63), however it does not require that the two
populations follow the normal distribution and have equal
population variances.

where:

• n1 is the number of observations of the first population.

• n2 is the number of observations of the second population.

• W is the sum of the ranks from the first population.

Kruskal-Wallis Test

H =
12

n(n+ 1)

[
(
∑
R1)2

n1
+

(
∑
R2)2

n2
+ ...+

(
∑
Rk)2

nk

]
−3(n+1)

(103)
Note: for the Kruskal-Wallis test to be applied, the samples
selected from the populations must be independent. If in ad-
dition the following prerequisites are met an ANOVA analysis
as in formula (70) can be applied instead:

• The samples are from independent populations.

• The population variances must be equal.

• The samples are from normal populations.

with k − 1 degrees of freedom (k is the number of popula-
tions), where:

•
∑
R1,

∑
R2, ...,

∑
Rk are the sums of the ranks of sam-

ples 1, 2, ... k, respectively.

• n1, n2, ..., nk are the sizes of samples 1, 2, ..., k, respec-
tively.

• n is the combined number of observations for all samples.

Spearman’s Coefficient of Rank Correlation

rs = 1− 6
∑
d2

n(n2 − 1)
(104)

where:

• rs is Spearman’s coefficient of rank correlation.

• d is the difference between the ranks for each pair.

• n is the number of paired observations.

Hypothesis Test: Rank Correlation

t = rs

√
n− 2

1− r2
s

(105)

where:

• rs is Spearman’s coefficient of rank correlation.

Index Numbers: Simple Index

P =
pt
p0
∗ 100 (106)

where:

• p0 is the base-period price.

• pt is the given period price.

Index Numbers: Simple Average of the Price Rela-
tives

P =

∑
Pi
n

(107)

Note:

• Advantage: simple price indices are not dependent on
the unit of measure of the item quantified.

• Disadvantage: simple price indices do not the account
for the relative importance of the items included.

The aforementioned shortcomings of not accounting for the
relative importance, i.e. the marginal quantities consumed in
each item category, are mitigated by the Laspeyres price index
as in formula (109) and the Paasche price index as in formula
(110).

where:

• Pi refers to the simple index for each to the items.

• n refers to the number of items.

Index Numbers: Simple Aggregate Index

P =

∑
pt∑
p0
∗ 100 (108)

Note: since the aggregate index is influenced by the unit of
measure, it is not used frequently.

where:

• p0 is the base-period price.

• pt is the given period price.

Index Numbers: Laspeyres Price Index

P =

∑
ptq0∑
p0q0

∗ 100 (109)

Note: the Laspeyres price index thus assumes that the base
period quantities have still important bearing on the current
price index and thus are realistic. Hence it contrasts the
assumption of the Paasche price index as in formula (110).

where:

• P is the price index.

• pt is the current price.

• p0 is the price in the base period.

• q0 is the quantity used in the base period.

Index Numbers: Paasche Price Index

P =

∑
ptqt∑
p0qt

∗ 100 (110)

Note: the Paasche price index assumes current period quantity
levels as base to account for changed preferences in consumed
quantities. Hence, it contrasts the assumption of the Laspeyres
price index as in formula (109).

where:
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• P is the price index.

• pt is the current price.

• p0 is the price in the base period.

• q0 is the quantity used in the base period.

Index Numbers: Fisher’s Ideal Index

Fisher’s Ideal Index =
√

(Laspeyres index)(Paasche index)
(111)

Note: Fisher’s Ideal Index is actually a geometric mean (7) of
Laspeyres (109) and Paasche (110) price indices.

Index Numbers: Value Index

V =

∑
ptqt∑
p0q0

∗ 100 (112)

where:

• P is the price index.

• pt is the current price.

• p0 is the price in the base period.

• q0 is the quantity used in the base period.

Index Numbers: Real Income

Real income =
Money income

CPI
∗ 100 (113)

where:

• CPI denotes consumer price index.

Index Numbers: Index as a Deflator

Deflated sales =
Actual sales

An appropriate index
∗ 100 (114)

Index Numbers: Index for Purchasing Power

Purchasing power of dollar =
$1

CPI
∗ 100 (115)

Time Series & Forecasting: Linear Trend Equation

ŷ = a+ bt (116)

where:

• ŷ is the projected value of the y variable for a selected
value of t.

• a is the y-intercept. It is the estimated value of y when
t = 0.

• b is the slope of the line, or the average change in ŷ for
each increase of one unit in t.

• t is any value of time that is selected.

Time Series & Forecasting: Log Trend Equation

log ŷ = log a+ log b(t) (117)

Time Series & Forecasting: Correction Factor for Ad-
justing Quarterly Means

Correction factor =
4.00

Total of four means
(118)

Time Series & Forecasting: Durbin-Watson Statistic

d =

∑n
t=2(et − et−1)2∑n

t=1(et)2
(119)
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