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Abstract

Econophysics is an interdisciplinary research field, applying theories and methods originally devel-
oped by physicists in order to solve problems in economics, usually those including uncertainty
or stochastic processes and nonlinear dynamics. Some of its application to the study of financial
markets has also been termed statistical finance referring to its roots in statistical physics.

The recent events of the 2008 world’s financial crisis and its uncontrolled effect propagated
among the global economic system, has produced a deep rethink of some paradigm and fundamen-
tals in economic modeling of financial markets.

Any reasonable model need to rely on some fundamental hypotheses and to rest on a theoretical
framework, which should be able to provide some basic and universal principles, this is the way all
the models arising from the physical world are build up.

One of the most classical approach has been to consider the efficient market hypothesis.. It
relies on the belief that securities markets are extremely efficient in reflecting information about
individual stocks and about the stock market as a whole. When information arises, the news spread
very quickly and are incorporated into the prices of securities without delay. Thus, neither technical
analysis, which is the study of past stock prices in an attempt to predict future prices, nor even
fundamental analysis, which is the analysis of financial information such as company earnings, asset
values, etc., to help investors select undervalued stocks, would enable an investor to achieve returns
greater than those that could be obtained by holding a randomly selected portfolio of individual
stocks with comparable risk.

We derive a set of equations which are a simple model for investor behavior in a theoretical
financial market. The model incorporates the emotional aspect of investor sentiment with memory
of price history which decays exponentially in time. Within this model, the emotional reaction
of the body of investors is to buy when the recent price has been increasing and sell when it has
been decreasing. The rational motivations are based on capitalizing on the difference between the
price and intrinsic value, with the possibility of some inertia in taking action. These two competing
effects provide the basis for fluctuations and instability.
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Chapter 1

PRICE DYNAMICS IN FINANCIAL
MARKETS

1.1 Efficient Market Hypothesis

The efficient market hypothesis is associated with the idea of a random walk,which is widely used in
the finance literature to characterize a price series where all subsequent price changes represent ran-
dom departures from previous prices. The logic of the random walk idea is that if any information
is immediately reflected in stock prices, then tomorrow’s price change will reflect only tomorrow’s
news and will be independent of the price changes today. Thus, resulting price changes must be
unpredictable and random.

Strongly linked to the market efficiency hypothesis, is the assumption of rational behavior among
the traders. Rationality of traders can be basically reassumed in two main features. First, when
they receive new information, agents update their beliefs by evaluating the probability of hypothe-
ses accordingly to Bayes’ law. Second, given their beliefs, agents make choices that are completely
rational, in the sense that they arise from an optimization process of opportune subjective utility
functions.

1.2 Behavioral Finance Theory

By the beginning of the twenty-first century, the intellectual dominance of the efficient market hy-
pothesis had become far less universal. Many financial economists and statisticians began to believe
that stock prices are at least partially predictable. A new breed of economists emphasized psycho-
logical and behavioral elements of stock-price determination. The behavioral finance approach has
emerged in response to the difficulties faced by the traditional paradigm.

It relies in the fact that some financial phenomena can be better understood using models in
which some agents are not fully rational. In some behavioral finance models, agents fail to update
their beliefs correctly. In other models, agents apply Bayes’ law properly but make choices that
are questionable, in the sense that they are incompatible with the optimization of suitable utility
functions.
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1.3 Prospect Theory

A strong impact in the field of behavioral finance has been given by the introduction of the prospect
theory by Kahneman and Tversky. They present a critique of expected utility theory as a descrip-
tive model of decision making under risk and develop an alternative model. Under prospect theory,
value is assigned to gains and losses rather than to final assets and probabilities are replaced by
decision weights.The theory which they confirmed by experiments predicts a distinctive fourfold
pattern of risk attitudes: risk aversion for gains of moderate to high probability and losses of low
probability, and risk seeking for gains of low probability and losses of moderate to high probability.

Further development in this direction, led to the discovery that that people systematically over-
reacting to unexpected and dramatic news events results in substantial weak-form inefficiencies in
the stock market.

1.4 Agent Based Modeling

Recently, these methods have given an important contribute and provided a huge quantity of nu-
merical simulations.The idea is to produce a big mass of artificial data and to observe how they can
fit with empirical observations. This approach is now also supported by the availability of many
recorded empirical data.The aim of the construction of such microscopic models of financial markets
is to reproduce the observed statistical features of market movements (e.g. fat tailed return distribu-
tions, clustered volatility, cycles, crashes) by employing highly simplified models with large numbers
of agents. Microscopic models of financial markets are highly idealized as compared to what they are
meant to model.The relevant part of physics that is used to build such models of financial markets
consists in methods from statistical mechanics. This attempt by physicists to map out the statistical
properties of financial markets considered as complex systems is usually referred to as econophysics.

The need to recover mathematical models which can display such scaling properties, but also
capable to deal with systems of many interacting agents and to take into account the effects of col-
lective endogenous dynamics, put the question on the choices of the most appropriate mathematical
framework to use.

Besides numerical simulations, it is of paramount importance to have a rigorous mathematical
theory which permits to identify the essential features in the modelling originating the stylized facts.
The classical framework of stochastic differential equations which played a major rule in financial
mathematics seems inadequate to describe the dynamics of such systems of interacting agents and
their emerging collective behavior.
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Chapter 2

KINETIC MODELLING FOR PRICE
FORMATION

2.1 Introduction

Kinetic theory was introduced in order to give a statistical description of systems with many inter-
acting particles. Rarefied gases can be thought as a paradigm of such complex systems, in which
particles are described by random variables which represents their physical states, like position and
velocity. A Boltzmann equation then prescribes the time evolution for the particles density proba-
bility function.

The above theoretical model seems to fit very well with the necessity to prescribe how the trad-
ing agents interacting in a stock market are leaded to form their expectations and re-evaluate their
choices on the basis of the influence placed on the neighbor agents’ behavior rather than the flux
of news coming from some fundamental analysis or direct observations of the market dynamic.The
kinetic approach reveals particularly powerful when from some simple local interaction rules some
global features for the whole system has to be derived, but also in the study of asymptotic regimes
and universal behaviors described by Fokker-Planck equations.

2.2 Opinion Modeling

The collective behavior of a system of trading agents can be described by introducing a state
variable y ε [-1,1] and the relative density probability function f(y) which, for each agent, represent
respectively the propensity to invest and the probability to be in such a state. Positive values of
y represent potential buyers, while negative values characterize potential sellers, close to y = 0 we
have undecided agents. Clearly,

ρ(t) =

∫ 1

−1
f(y, t)dy (2.1)

Equation 2.1 represents the number density. Moreover we define the mean investment propensity
by equation 2.2,

Y (t) =
1

ρ(t)

∫ 1

−1
f(y, t)ydy (2.2)

Traders are allowed to compare their strategies and to re-evaluate them on the basis of a com-
promise opinion dynamic. This is done by assigning simple binary interaction rules, where, if the
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pair (y,y∗) and (y’,y′∗) represents respectively the pre-interaction and the post-interaction opinions,
we have:

y′ = (1− α1(H(y))y + α1H(y)y∗ +D(y)η (2.3)

y′∗ = (1− α1(H(y∗))y∗ + α1H(y∗)y∗ +D(y)η∗ (2.4)

Here α1ε [0,1] measures the importance the individuals place on others opinions in forming
expectations about future price changes.The random variables η and η∗ are assumed are assumed
distributed accordingly to θ(η) with zero mean and variance σ2 and measure individual deviations to
the average behavior. The functions H(y) and D(y) characterize respectively, herding and diffusive
behavior. Simple examples of herding function and diffusion function are given by:

H(y) = a+ b(1− | y |) (2.5)

D(y) = (1− y2)2γ (2.6)

With 0 ≤ a + b ≤ 1, a ≥ 0, b > 0, γ >0.

2.3 Market Influence

The traders are also influenced by the dynamics of stock market’s price, so a coupling with the
price dynamic has to be considered. With the same kinetic setting we define the probability density
V(s,t) of a given price s at time t. The market price S(t) is then defined as the mean value.

S(t) =

∫ ∞

0

V (s, t)sds (2.7)

Price changes are modeled as endogenous responses of the market to imbalances between demand
and supply characterized by the mean investment propensity accordingly to the following price
adjustment.

s′ = s+ βρY (t)s+ ηS (2.8)

Where, β >0 represents the price speed evaluation and η is a random variable with zero mean
and variance ζ2 distributed accordingly to Ψ(η).
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3

B. Market influence

The traders are also influenced by the dynamics of stock
market’s price, so a coupling with the price dynamic has to
be considered. With the same kinetic setting we define the
probability density V (s, t) of a given price s at time t. The
market price S(t) is then defined as the mean value

S(t) =

∫ ∞

0
V (s, t)sds. (2.4)

Price changes are modeled as endogenous responses of the
market to imbalances between demand and supply character-
ized by the mean investment propensity accordingly to the fol-
lowing price adjustment

s′ = s+βρY(t)s+ηs, (2.5)

where β > 0 represents the price speed evaluation and η is a
random variable with zero mean and variance ζ 2 distributed
accordingly to Ψ(η).
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FIG. 2.1: An hypothetical value function. The reference point R is
the value of S′/S such that Φ(R) = 0. The value function decision
makers use to assess the possible shifts away from the reference point
is concave in the domain of gains and convex in the domain of losses.

To take into account the influence of the price in the mech-
anism of opinion formation of traders, we introduce a normal-
ized value function Φ = Φ(Ṡ(t)/S(t)) in [−1,1] in the sense
of Kahneman and Tversky [18, 19] that models the reaction
of individuals towards potential gain and losses in the mar-
ket. Thus we reformulate the binary interaction rules in the
following way

y′ = (1−α1H(y)−α2)y+α1H(y)y∗ +α2Φ+D(y)η ,
(2.6)

y′∗ = (1−α1H(y∗)−α2)y∗ +α1H(y∗)y+α2Φ+D(y∗)η∗.

Here α1 ∈ [0,1] and α2 ∈ [0,1], with α1 +α2 ≤ 1, measure
the importance the individuals place on others opinions and
actual price trend in forming expectations about future price
changes. This permits to introduce behavioral aspects in the
market dynamic and to take into account the influence of psy-
chology and emotivity on the behavior of the trading agents.

Note that agents influence the price through their mean
propensity to invest Y (t) and at the same time the price trend
influences their mean propensity through the value function
Φ. Thus, except for the particular shape of the value function,
if the mean propensity is initially (sufficiently) positive then it
will continue to grow together with the price and the opposite
occurs if it is initially (sufficiently) negative. The market goes
towards a boom (exponential grow of the price) or a crash (ex-
ponential decay of the price).

C. Lognormal behavior

A set of Boltzmann equations for the evolution of the un-
known densities f (y, t) and V (s, t) can be obtained using the
standard tools of kinetic theory [4]. Such system reads

∂ f
∂ t

= Q( f , f ),
(2.7)

∂V
∂ t

= L(V ),

where the quadratic operator Q and the linear operator L can
be conveniently written in weak form as

∫ 1

−1
Q( f , f )ϕ(y)dy =

∫

[−1,1]2

∫

R2
B(y,y∗) f (y) f (y∗)(ϕ(y′)−ϕ(y))dη dη∗ dy∗ dy,

∫ ∞

0
L(V )ϕ(s)ds=

∫ ∞

0

∫

R
b(s)V (s)(ϕ(s′)−ϕ(s))dη ds.

In the above equations ϕ is a test function and the transition
rates have the form

B(y,y∗) = Θ(η)Θ(η∗)χ(|y′| ≤ 1)χ(|y′∗| ≤ 1),
b(s) = Ψ(η)χ(s′ ≥ 0),

with χ(·) the indicator function.
A simplified Fokker-Planck model which preserves the

main features of the original Boltzmann model is obtained un-
der a suitable scaling of the system. In such scaling all agents
interact simultaneously with very small variations of their in-
vestment propensity (see [26] for details). This allows us to
recover the following Fokker-Plank system

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ f
∂ t

+
∂
∂y

[(ρα1H(y)(Y − y)+ρα2 (Φ− y)) f ]

=
σ2ρ
2

∂ 2

∂y2
[D2(y) f ],

∂V
∂ t

+
∂
∂ s

(βρYsV ) =
ζ 2

2
∂ 2

∂ s2
(
s2V

)
,

(2.8)

where we kept the original notations for all the scaled quanti-
ties.
The above equation for the price admits the self similar log-

normal solution [8, 26]

V (s, t) =
1

s(2log(Z(t)2)π)
1
2
exp

(
− (log(sZ(t))2

2 log(Z(t)2)

)
, (2.9)

Figure 2.1: Loss vs. Gain

To take into account the influence of the price in the mechanism of opinion formation of traders,

we introduce a normalized value function Θ = Θ(
dS(t)
dt

S(t)
) in [-1,1] in the sense of Kahneman and

Tversky that models the reaction of individuals towards potential gain and losses in the market.
Thus we reformulate the binary interaction rules in the following way:

y′ = (1− α1(H(y)− α2)y + α1H(y)y∗ + α2Θ(y)η (2.9)

y′∗ = (1− α1(H(y∗)− α2)y∗ + α1H(y∗)y∗ + α2Θ(y)η∗ (2.10)

Here, α1ε [0,1] and α2ε[0,1] with α1 + α2 ≤ 1, measure the importance the individuals place on
others opinions and actual price trend in forming expectations about future price changes. This
permits to introduce behavioral aspects in the market dynamic and to take into account the influ-
ence of psychology and emotivity on the behavior of the trading agents.

Note: Except for the particular shape of the value function, if the mean propensity is initially
(sufficiently) positive then it will continue to grow together with the price and the opposite occurs
if it is initially (sufficiently) negative. The market goes towards a boom (exponential grow of the
price) or a crash (exponential decay of the price).
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2.4 Lognormal Behavior

A set of Boltzmann equations for the evolution of the unknown densities f(y,t) and V(s,t) can be
obtained using the standard tools of kinetic theory. Such systems are defined by the equations 2.11
and 2.12.

∂f

∂t
= Q(f, f) (2.11)

∂V

∂t
= L(V ) (2.12)

where the quadratic operator Q and the linear operator L can be conveniently defined in weak
form by equation 2.13 and 2.14.

∫ 1

−1
Q(f, f)Φ(y)dy =

∫

[−1,1]2

∫

R2

B(y, y∗)f(y)f(y∗)(Φ(y)− Φ(y′))dηdη∗dydy∗ (2.13)

∫ ∞

0

L(V )Φ(s)ds =

∫ ∞

0

∫

R

b(s)V (s)(Φ(s′)− Φ(s))dηds (2.14)

In the above equations Φ is a test function and the transition rates have the form given by the
equations 2.15 and 2.16.

B(y, y∗) = Θ(η)Θ(η∗)χ(| y′ |≤ 1)χ(| y′∗ |≤ 1) (2.15)

b(S) = Ψ(η)χ(s′ ≥ 0) (2.16)

With χ(.) representing the indicator function.
A simplified Fokker-Planck model which preserves the main features of the original Boltzmann

model is obtained under a suitable scaling of the system. In such scaling all agents interact simul-
taneously with very small variations of their investment propensity.This allows us to recover the
following Fokker-Plank system:

∂f

∂t

∂[(ρα1H(y)(Y − y) + ρα2(Θ− y))f ]

∂y
=
σ2ρ

2

∂2[D2(y)f ]

∂2y2
(2.17)

∂V

∂t
+
∂[βρY sV ]

∂s
=
ζ2

2

∂2s2V

∂2s2
(2.18)

where we kept the original notations for all the scaled quantities.
The above equation for the price admits the self similar lognormal solution.

V (s, t) =
1

s(2log(Z(t)2)π)
1
2

exp(
−log(sZ(t))2

2log(Z(t)2)
) (2.19)

Where, Z(t) =
√
E(t)/S(t), and E(t) satisfies the differential equation given by equation 2.20.

dE

dt
= (2βY + ζ2)E (2.20)
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2.5 A Different Strategy

We consider now in the stock market the presence of traders who deviate their strategy from the
mass. We introduce trading agents who rely in a fundamental value for the traded security. They are
buyer while the price is below the fundamental value and seller while the price is above. Expected
gains or losses are then evaluated from deviations of the actual market price and just realized only
wether or not the price will revert towards the fundamental value. Such agents are not influenced
by other agents’ opinions.

The microscopic interactions rules for the price formation now reads.

s′ = s+ β(ρY (t)s+ ρFγ(SF − s)) + ηs (2.21)

Where, SF represents the fundamental value of price, ρF is the number density for such trad-
ing agents performing a different strategy, while γ is the reaction strength to the deviations from
fundamental value. If we are interested in steady states we can ignore the possibility of a strategy
exchange between traders and the resulting kinetic system has the same structure ( 2.17 and 2.18).
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Chapter 3

MARKET FLUCTUATION
PSYCHOLOGY

3.1 Introduction

Large price fluctuations in financial markets are often far in excess of the changes in intrinsic value.
These fluctuations are generally attributed to the psychological reactions and overreactions to rapid
but smaller changes in fundamental value. In this paper, we model the behavior of a theoretical
financial market based on the psychological motivation of a body of investors.

The modeling of a financial system with a large number of decision makers is analogous to mod-
eling a physical system consisting of many degrees of freedom. The alternatives can be grouped
into at least two categories:

1. The states in which the investor is in, for example, he is in a buying mode or a selling mode
is determined by giving individual probabilistic weighing. Within this model, the emotional
reaction of the body of investors is to buy when the recent price has been increasing and
sell when it has been decreasing.This is analogous to a statistical mechanical approach to
thermodynamics.

2. In this model one considers the total number of investors in each state and the total rate of
transition of these investors from one state to another just like the transfer of molecules from
one state to another. This is analogous to chemical kinetics or Boltzmann dynamics for a gas.

The intent of this section is that to show that such price fluctuations can be modeled using an
equation which relates the current price change to an integral, ζ(t) involving past price and price
derivative history. Thus it is not only the current prices but the past prices and the past price
derivatives that help in determining the future prices and predict the market behavior.

3.2 The Model

The price of the stock commodity is determined by the behavior of the share holders who might
buy, sell or hold the stock. It is assumed that the share held by the investors is small compared to
the total value in the market. An investor has four options (A,B,C,D). A- sell the stock, B- hold
the stock, C- sell the cash, D- hold the cash. Each of these options of the investor defines the state
in which he is. There may be several transfer of investors from one state to another just like the
transfer of molecules from one energy state to another in the chemical kinetics - that is the laws of
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mass action. For example, transitions occur from B to A, from A to D, from D to C, and from C
to B. The corresponding rate equations are then :

dA

dt
= −k1A+ k4B (3.1)

dB

dt
= k3C − k4B (3.2)

dC

dt
= −k3C + k2D (3.3)

dC

dt
= k1A− k2D (3.4)

Where the ki will depend on the history of the price and its derivative. Note that summing the
four equations implies that A + B + C + D is constant.

The crucial assumptions on mass psychology of investors are embedded in the rate co-efficients
ki which have two factors. The first factor is the “emotional” aspect of the investor urges him to
sell the stock when the prices are falling. It is assumed that each investor has some idea about the
rise and fall of the stock in the past and the price history derivatives and remembers it through an
exponentially failing memory. Faster the memory fails, more the emphasis on the current changes in
price.We thus have a product of the fractional change in price, i.e., P−1 dP

dt
, with a natural function

for decay; the exponential, integrated over all past times. This yields the first integral of 3.5 below.
The second factor is the “rational” aspect is based on the motivation to buy when the price is below
the realistic or intrinsic value, Pa(t) of the shock.Here, there is also a decaying exponential term
due to intellectual inertia, or lag time between actual changes and investor action, multiplied by
the fractional discount.

Hence we define the “investor sentiment” or tendency to buy as :

ζ(t) = q1c1

∫ t

−∞
e−c1(t−τ)

1

P (τ)

dP (τ)

dτ
dτ + q2c2

∫ t

−∞
e−c2(t−τ)[

Pa(τ)− P (τ)

Pa(τ)
]dτ (3.5)

Here, q1 is the contribution to the ”emotional” aspect, q2 is the introduction to the intellectual
aspect, c−11 is the ”memory length”, and c−12 is the ”intellectual inertia”.e.g., a large q1 and c1 means
means that a recent sharp price increase will improve investor sentiment. Choosing an appropriate
monotone positive function of ζ as for instance, 1

2
+ 1

2
tanh(ζ(t)), one may write:

k2 = α[
1

2
+

1

2
tanh(ζ(t))] (3.6)

k4 = β[
1

2
− 1

2
tanh(ζ(t))] (3.7)

Note that since k2 is is the rate at which investors decide to buy stock while k4 is the rate at
which they decide to sell stock, we have assumed the relation k2

α
+ k4

β
= 1, where α and β are

constant amplitudes .Due to simplifications, it is not necessary to derive k1 and k3.
Next, we discuss the equation for the price, P. The relative price change should be given by a

function, f, of buyers and sellers. That is:
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dP

dt
= Pf(C/A) (3.8)

where f is an increasing function such that f(1) = 0. For example, f(z) = δlog(x) is acceptable.

The assumptions inherent in 3.5, 3.6, and 3.7 lead to a preliminary interpretation for price
fluctuations. Further the concept of ”panic buying and selling” has been modeled using the kinetic
theory. The price fluctuations are a result of a difference between the perceived and the expected
prices. The emotional tendency of the stock holder tends to serve as a destabilizing factor for this
gap rather than bridging it. Suppose there is a price fluctuation with the price increasing a bit, due
to behavior of stock holders zeta(t) further increases and the same analogy can be applied to a slight
decrease in price. On the other hand, the latter part of 3.5 is a stabilizing factor in that a deviation
from actual value (Pa(t)) results in a change in investor sentiment which is in the direction of restor-
ing equilibrium. This process is usually called “bargain hunting” or “profit taking”. Consequently,
there is a basic competition between these stabilizing and destabilizing forces. Within our model,
the result of this competition decides whether one will observe abrupt reversals in price (and frac-
tion of buyers) in the absence of dramatic changes in fundamental value of the underlying securities.

3.3 Simplification of The Model

The equations 3.1, 3.2, 3.3, and 3.4 can be reduced to a single equation with the additional as-
sumption that the transition from seller to sitter is very rapid. This is realistic since buy and sell
orders are usually executed almost immediately. More precisely, we assume that :

k1 =
k̄1
ε

(3.9)

k3 =
k̄3
ε

(3.10)

Where, 0≤ ε � 1 and k̄1 and k̄3 are O(1). Then letting ε −→ 0, we see that A −→0, C−→0,
k1A −→ k4B, and k3C−→ k2D, so that 3.1 reduces to :

dD

dt
= k4B − k2D = −dB

dt
(3.11)

From this, it is clear that D = 1 - B and therefore that:

dB

dt
= k2(1−B)− k4B (3.12)

C

A
=
k2k̄1
k4k̄3

1−B
B

(3.13)

which reduces the price equation ( 3.8) to one only involving B, namely:

dP

dt
= Pf(

k2k̄1
k4k̄3

1−B
B

) (3.14)
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In togetherness, the equations 3.12 and 3.14 coupled along with equation 3.5, 3.6, and 3.7
constitute the model based on these assumptions.

Unlike many mathematical models of markets, a key feature of our model is the absence of
explicit probabilistic concepts. The central assumption to our model is the use of a realistic price
value of stock ,Pa(t).
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Chapter 4

CONCLUSION

CONCLUSION FOR CHAPTER 3: We have therefore seen that the mathematical model based on
kinetic theory that we have used not only models the price fluctuations based on the current prices
but also takes into account the past prices and the price history derivatives. Due weight-age has
been given to customer motivation and behavior. The model does not use any explicit probabilistic
concept but revolves around the concept of assigning a realistic value to stocks which forms a central
concept in the stock market.
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