

MAT 999:
Course Title

Professor: Instructor Name
Notes By: Note Taker

Last Updated: August 29, 2019

Contents

0 Introduction 1
0.1 Fermat's Last Theorem . 1
0.2 Purpose . 1

1 First Topics 2
References 3

0 Introduction

0.1 Fermat's Last Theorem

There are many famous theorems in Mathematics. One of the most famous theorems is Fermat's Last Theorem.

Theorem 0.1 (Fermat's Last Theorem). If $n>2$, there are no integers a, b, c with $a b c \neq 0$ such that $a^{n}+b^{n}=c^{n}$.

0.2 Purpose

Theorem 0.1 is one of the most famous theorems in Mathematics. But most undergraduate students do not learn Fermat's Last Theorem. Instead, many students learn formulas such as:

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot d S
$$

But Mathematics starts far more simple than that. The first topic in Mathematics that one typically sees is Arithmetic. For instance, students typically will learn "FOIL."

$$
\begin{equation*}
(x+y)^{2}=x^{2}+2 x y+y^{2} \tag{0.1}
\end{equation*}
$$

However, (0.1) tends to be a stumbling block for students. Many students will instead claim, incorrectly, that $(x+y)^{2}=x^{2}+y^{2}$. The purpose of this course will be to prove Dirichlet's Unit Theorem, which states:

Theorem 1.1 (Dirichlet's Unit Theorem). Let K be a number field of degree n with r real embeddings and s conjugate pairs of complex embeddings. Then the abelian group \mathcal{O}_{K}^{\times}is a finitely generated abelian group with rank $r+s-1$ and $\mathcal{O}_{K}^{\times} \cong \mu_{K} \times \mathbb{Z}^{r+s-1}$, where μ_{K} are the roots of unity in \mathcal{O}_{K}.

However, it will take some time to prove Theorem 1.1.

1 First Topics

Recall that the goal of this course was to prove Dirichlet's Unit Theorem:
Theorem 1.1 (Dirichlet's Unit Theorem). Let K be a number field of degree n with r real embeddings and s conjugate pairs of complex embeddings. Then the abelian group \mathcal{O}_{K}^{\times}is a finitely generated abelian group with rank $r+s-1$ and $\mathcal{O}_{K}^{\times} \cong \mu_{K} \times \mathbb{Z}^{r+s-1}$, where μ_{K} are the roots of unity in \mathcal{O}_{K}.

Proof. L.T.R.
Example 1.1. If $K=\mathbb{Q}$, then $r=1$ and $s=0$ so that $r+s-1=0$. Therefore, $\mathcal{O}_{\mathbb{Q}}^{\times}=\mathbb{Z}^{\times}=\{ \pm 1\}$. Of course, this is the most trivial possible example.

To learn even more Mathematics, read [Neu99].

References

[Neu99] Jürgen Neukirch. Algebraic Number Theory (Schappacher, N., trans.) New York: SpringerVerlag, 1999.

