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Chapter 2

Subgroups

2.1 Definition and Examples

1. (a) Clearly, this subset is not empty, since it contains 0 = 0 + 0i. In addition,
for any two elements a + ai, b + bi in this subset, we have (a + ai) + (−b− bi) =

(a− b) + (a− b)i is also in this subset. Therefore this subset is a subgroup of C.

1. (b) Let H = {z ∈ C | |z| = 1}. H is clearly not empty since it contains 1. In
addition, notice that for any z ∈ H, we have |z−1| = |z||z−1| = |zz−1| = 1. So,
for any z1, z2 ∈ H, we have |z1z−1

2 | = |z1||z−1
2 | = 1 so z1z−1

2 ∈ H. H is therefore a
subgroup of C \ {0}.

1. (c) Name this subset H. H is not empty since 1
n is in H. In addition, for any two

elements a
b , c

d ∈ H, with n = αb = βd, we have a
b −

c
d = ad−bc

bd = αβad−αβbc
αβbd = αa−βc

n
is also an element of H. Therefore, H is a subgroup of Q.

1. (d) Name this subset H. H cannot be empty because 1 is coprime to every
positive integer, so H contains all integers. In addition, for any two elements
a
b , c

d ∈ H, we have a
b −

c
d = ad−bc

bd is also in H, since if (b, n) = (d, n) = 1, then
(bd, n) = 1. Hence, H is a subgroup of Q.

1. (e) Name this subset H. H cannot be empty, since 1 is in H. Furthermore,
for any two elements x, y ∈ H, we have (xy−1)2 = x2y−2 is an element of H since
Q \ {0} is closed under division. It follows that H is a subgroup of R \ {0}.

2. (a) This set is not closed under the group operation (e.g., (1 2)(1 3) = (1 3 2))
and so it cannot be a subgroup.
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2.1. Definition and Examples 2

2. (b) This set is not closed under the group operation (e.g., (sr)(sr2) = s2r = r)
and so it cannot be a subgroup.

2. (c) This set is not closed under the group operation (e.g., if a satisfies a|n, xa

cannot be in this subset) and so it cannot be a subgroup.

2. (d) This set is not closed under the group operation, since the sum of any two
odd integers is an even integer. So, it cannot be a subgroup.

2. (e) This set is not closed under the group operation, since
√

2,
√

3 are in this
subset, yet

√
2 +
√

3 is not ((
√

2 +
√

3)2 = 5 + 2
√

6).

3. (a) Since all of these elements are their own inverses, it suffices to show that
the product of any two elements in this subset is also in this subset. We exclude
products with the identity, since these are obviously in the subset. The products
are as follows:

r2s = sr2 r2sr2 = s ssr2 = r2 sr2r2 = s sr2s = r2

All of these are in the subset, so this subset is a subgroup of D8.

3. (b) Again, these elements are their own inverses. The products are as follows:

r2sr = sr3 r2sr3 = sr = sr3r2 srsr3 = r2 = sr3sr

Thus, this subset is a subgroup of D8.

4. Z is a group under addition, but the infinite subset Z+ is not a subgroup
because it does not contain the identity element and it is not closed under inverses.

5. Assume there is such a subgroup H. Let y ∈ G be the unique element satisfying
y /∈ H and let x ∈ H be any non-identity element. Then x, x−1y ∈ H but their
product x(x−1y) = y is not. Thus, H is not a subgroup, which is a contradiction.
We conclude that no such H exists.

6. Let H = {g ∈ G | |g| < ∞}. H cannot be empty, since the identity element
is order 1. Consider any two elements g, h ∈ H with |g| = n and |h| = m. Then
(gh−1)nm = gnmh−nm = 1m1n = 1, so gh−1 ∈ H. It follows that H is a subgroup of
G.

This proof does not hold for the non-abelian group G = 〈r, s | rn = sm = 1〉 since
r, s are of finite order, but rs has infinite order.
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7. The torsion subgroup is {(a, b) ∈ Z× (Z/nZ) | a = 0}. Consider (1, b), (−1, c) ∈
Z × (Z/nZ), where b + c 6= 0. These two elements are of infinite order, but
(1, b) + (−1, c) = (0, b + c) is a non-identity element of finite order. Thus, the set of
elements of infinite order together with the identity is not a subgroup of this direct
product.

8. Assume without loss of generality that H ⊆ K. Then H ∪ K = K so H ∪ K ≤ G.

Assume there exists H ∪ K ≤ G such that H * K and K * H. Consider any
h ∈ H \ K and any k ∈ K \ H. Observe that hk /∈ H ∪ K. For if it were, then hk ∈ H
or hk ∈ K. But hk ∈ H implies k ∈ H (since h−1(hk) = k) and hk ∈ K implies
h ∈ K (since (hk)k−1 = h). Clearly, this is impossible, so hk /∈ H ∪ K. Therefore,
H ∪ K is not closed under the group operation. We have H ∪ K � G, which is a
contradiction. So, no such H ∪ K exists.

9. SLn(F) clearly contains the identity I. SLn(F) is closed under the group op-
eration, since det(AB) = det(A)det(B) for all A, B ∈ GLn(F). SLn(F) is also
closed under inverses, since det(A−1) = det(A)−1 for all A ∈ GLn(F). Thus,
SLn(F) ≤ GLn(F).

10. (a) H ∩ K must contain 1, since H and K are subgroups. For any element
a ∈ H ∩ K, we have a ∈ H and a ∈ K so that a−1 ∈ H and a−1 ∈ K. It follows that
a−1 ∈ H ∩ K. For any two elements a, b ∈ H ∩ K, we have a, b ∈ H and a, b ∈ K.
Therefore, ab ∈ H and ab ∈ K so ab ∈ H ∩ K. Thus, H ∩ K ≤ G.

10. (b) Note that the intersection must contain the identity since all subgroups
contain the identity. Any element a in the intersection must be in all of the sub-
groups of the collection. All of the subgroups must therefore contain a−1, from
which it follows that the intersection contains a−1. Any two elements a, b in the
intersection must be in all of the subgroups of the collection. All of the subgroups
must therefore contain ab, from which it follows that ab is in the intersection. Thus,
the intersection must also be a subgroup of G.

11. (a) Name this subset H. H is not empty, since (1, 1) ∈ H. For any two
elements (a, 1), (b, 1) ∈ H, we have (a, 1)(b, 1)−1 = (a, 1)(b−1, 1) = (ab−1, 1) is also
in H. Therefore H ≤ A× B.

11. (b) The argument that this subset is a subgroup of A× B is nearly identical
to the one in Exercise 11.(a).
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11. (c) Name this subset H. H is not empty, since (1, 1) ∈ H. For any two
elements (a, a), (b, b) ∈ H, we have (a, a)(b, b)−1 = (a, a)(b−1, b−1) = (ab−1, ab−1)

is also in H. Thus, H ≤ A× A.

12. (a) Name this subset H. H is not empty, since 1n = 1 is in H. For any two
elements an, bn ∈ H, we have anb−n = (ab−1)n is also in H. Thus, H ≤ A.

12. (b) Name this subset H. H is not empty since 1 is in H. For any two elements
a, b ∈ H, we have (ab−1)n = anb−n = 1, so ab ∈ H. Thus, H ≤ A.

13. It suffices to show that if H is a subgroup with this property and H 6= {0},
then H = Q. So let H 6= {0} and suppose H 6= Q. Consider any non-zero h ∈ H
and q ∈ Q \ H. ∃a, b, c, d ∈ Z such that (a, b) = (c, d) = 1 and h = a

b , q = c
d .

Given H’s special property, 1
h ∈ H. H must be closed under the group operation,

so a = bh and b = a
h must be elements of H. Since (a, b) = 1, it follows that 1 ∈ H,

and therefore, so is all of Z. But this implies that 1
d ∈ H, and by closure under

addition, so is q. This is a contradiction, so H = Q and we have the claim.

14. |s| = |sr| = 2, but s(sr) = r. Since |r| ≥ 3, this set is not closed under the
group operation. It cannot be a subgroup of D2n.

15. Let H =
⋃∞

i=1 Hi. Since every subgroup contains the identity, H must also
contain the identity, and is therefore non-empty. It is clear that for any element
h ∈ H, ∃N ∈ Z+ such that ∀n ≥ N, h ∈ Hn. Since h ∈ HN , it follows that
h−1 ∈ HN and therefore, h−1 ∈ H. Now consider any two g, h ∈ H. Let N, M ∈ Z+

be such that ∀n ≥ N, h ∈ Hn and ∀n ≥ M, g ∈ Hn. Then g, h ∈ HN+M and
therefore, gh ∈ HN+M. It follows that gh ∈ H. Hence, H ≤ G.

16. Name this subset H. Consider the product AB of any two elements A, B ∈ H.
Note that the (i, j)th entry of AB is given by (AB)ij = ∑k AikBkj. However, for k < i,
Aik = 0, and for k > j, Bkj = 0. So, (AB)ij = ∑i≤k≤j AikBkj. If i > j, there is no non-
zero term in this sum, so (AB)ij = 0 for all i > j. This shows that H is closed under
the group operation. Now, consider the matrix A−1 for any A ∈ H. We will show
that A−1

ij = 0 if i > j. For j = 1, we have (A−1A)i1 = ∑k≤1 A−1
ik Ak1 = A−1

i1 A11. But

A−1 A = I, so A−1
i1 = 0 for all i > 1. Suppose this holds for all j < ` where ` > 1.

Then for j = `, we have (A−1A)i` = ∑k≤` A−1
ik Ak`. From the inductive assumption,

we have that A−1
ik = 0 if i > k for all k < `. Thus, for all i > `, (A−1A)i` = A−1

i` A``.
But A−1 A = I, so A−1

i` A`` = 0. Since A`` 6= 0, it follows that A−1
i` = 0. By induction

on j, the claim holds. This implies that A−1 is in H. Therefore, H ≤ GLn(F).
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17. Name this subset H. Drawing on the work from Exercise 16, we just need to
show that (AB)ii = A−1

ii = 1 for all i and any A, B ∈ H. So consider the product of
any two elements A, B ∈ H. We have (AB)ii = ∑k AikBki for all i. But since Aik = 0
for all k < i and Bki = 0 for all k > i, we have (AB)ii = AiiBii = 1 for all i. Thus, H
is closed under the group operation. Now consider A−1. We already know from
Exercise 16 that A−1 is upper triangular. Thus, (AA−1)ii = ∑k Aik A−1

ki = Aii A−1
ii .

But since AA−1 = I, we must have Aii A−1
ii = A−1

ii = 1 for all i. Thus, H is closed
under inverses. It follows that H ≤ GLn(F).
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2.2 Centralizers and Normalizers, Stabilizers and Kernels

1. The centralizer CG(A) is the set {g ∈ G | gag−1 = a, ∀a ∈ A}. But if g satisfies
a = gag−1 for all a ∈ A, then g−1ag = g−1gag−1g = a for all a ∈ A. Similarly,
if a = g−1ag for all a ∈ A, then gag−1 = gg−1agg−1 = a for all a ∈ A. Thus,
CG(A) = {g ∈ G | g−1ag = a, ∀a ∈ A}.

2. We have CG(Z(G)) = {g ∈ G | gzg−1 = z, ∀z ∈ Z(G)}. For any element g ∈ G,
we have gz = zg for all z ∈ Z(G) by definition of Z(G). But if gz = zg for all
z ∈ Z(G), then gzg−1 = z for all z ∈ Z(G). Therefore, G ⊆ CG(Z(G)). Since
CG(Z(G)) ⊆ G by definition, we have CG(Z(G)) = G.

3. Note that for any g ∈ CG(B), we must have g ∈ CG(A), since g satisfies gbg−1 =

b for all b ∈ B and A ⊆ B. So, CG(B) ⊆ CG(A). CG(B) cannot be empty because
it must contain the identity. In addition, for any two elements g, h ∈ CG(B), the
product gh−1 satisfies gh−1b(gh−1)−1 = gh−1bhg−1 = gbg−1 = b for all b ∈ B, so
gh−1 ∈ CG(B). Thus, CG(B) ≤ CG(A).

4. We start with S3:

CS3({1}) = S3 CS3({(1 2)}) = {1, (1 2)} CS3({(1 3)}) = {1, (1 3)}

CS3({(2 3)}) = {1, (2 3)} CS3({(1 2 3)}) = {1, (1 2 3), (1 3 2)}

CS3({(1 3 2)}) = {1, (1 2 3), (1 3 2)} Z(S3) = {1}

Next we examine D8:

CD8({1}) = D8 CD8({r}) = {1, r, r2, r3} CD8({r2}) = D8 CD8({r3}) = {1, r, r2, r3}

CD8({s}) = {1, r2, s, sr2} CD8({sr}) = {1, r2, sr, sr3} CD8({sr2}) = {1, r2, s, sr2}

CD8({sr3}) = {1, r2, sr, sr3} Z(D8) = {1, r2}

Finally, for Q8, we have:

CQ8({1}) = Q8 CQ8({−1}) = Q8 CQ8({i}) = {1,−1, i,−i} CQ8({−i}) = {1,−1, i,−i}

CQ8({j}) = {1,−1, j,−j} CQ8({−j}) = {1,−1, j,−j} CQ8({k}) = {1,−1, k,−k}

CQ8({−k}) = {1,−1, k,−k} Z(Q8) = {1,−1}

5. (a) Drawing on the results of Exercise 4, we find that CS3(A) = A. Next,
note that since CS3(A) ≤ NS3(A) and |A| = 3, by Lagrange’s theorem, either
NS3(A) = A or NS3(A) = S3. Since (1 2)(1 2 3)(1 2) = (2 3)(1 2) = (1 3 2) and
(1 2)(1 3 2)(1 2) = (1 2)(2 3) = (1 2 3), we have NS3(A) = S3.
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5. (b) Drawing on the results of Exercise 4, we find that CD8(A) = A. Again, since
CD8(A) ≤ ND8(A) and |A| = 4, by Lagrange’s theorem, we have either ND8(A) =

A or ND8(A) = D8. Since rsr−1 = sr−2 = sr2, rr2r−1 = r2, and rsr2r−1 = s, we find
that ND8(A) = D8.

5. (c) All powers of r commute with each other, so A ≤ CD10(A). By Lagrange’s
theorem, either CD10(A) = A or CD10(A) = D10. Since srs = r−1 6= r, we have
CD10(A) = A. Lagrange’s theorem allows us to determine that either ND10(A) = A
or ND10(A) = D10. Since srs = r4, sr2s = r3, sr3s = r2, and sr4s = r, we have
ND10(A) = D10.

6. (a) Consider any element g ∈ H. We will show that gHg−1 = H. First, pick
any element h ∈ H. We have g−1hg ∈ H, since H is a group. It follows that gHg−1

contains the element g(g−1hg)g−1 = h, so H ⊆ gHg−1. But H is closed under its
group operation, so gHg−1 ⊆ H. Therefore, H = gHg−1 and g ∈ NG(H). We
conclude that H ≤ NG(H).

This is not true if H is merely a subset of G. Take, for example, the subset {1, r, s}
of D8. The normalizer of this subset is ND8({1, r, s}) = {1, r2}, and {1, r, s} is not
even a subset of its normalizer.

6. (b) If H is abelian, then for any element g ∈ H, we have gh = hg for all h ∈ H.
This implies that ghg−1 = h for all h ∈ H. Therefore, H ≤ CG(H).

If H ≤ CG(H), then for any element g ∈ H, ghg−1 = h for all h ∈ H. This
implies that gh = hg for all h ∈ H. Therefore, H must be abelian.

7. (a) First, we show that an element of the form sri cannot be in Z(D2n). If
there were such an element in Z(D2n), then we would require srir = rsri. Since
srir = sri+1 and rsri = sri−1, it must be that sri+1 = sri−1. This can only be true if
sr2 = s. But n ≥ 3 so sr2 6= s. Therefore, no such element exists in Z(D2n), which
contains only powers of r.

Since powers of r commute with each other, to prove that a specific power rk is
in Z(D2n), it suffices to show that it commutes with all elements of the form sri.
For rk to be an element of Z(D2n), it must satisfy srirk = rksri for all i ∈ Z. That
is, it must satisfy s = sr2k. It follows that n|2k. But if n is odd, n must divide k.
Therefore, rk = 1 and Z(D2n) = {1}.
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7. (b) We draw on the work for Exercise 7.(a). If n is even, then 2k can be any
multiple of n. This allows the new possibility 2k = n, so we have Z(D2n) = {1, rk}
where n = 2k.

8. First, note that Gi is not empty, since every stabilizer contains id. Consider any
two elements σ, τ ∈ Gi. It is obvious that τ−1(i) = τ−1(τ(i)) = i. Since the action
of G on {1, ..., n} is a group action, we have (σ ◦ τ−1) · i = σ · (τ−1 · i) = σ · i = i.
Therefore, σ ◦ τ−1 ∈ Gi as well. We may conclude that Gi ≤ G. If we require that i
be fixed, that leaves us n− 1 elements of {1, ..., n} that we can freely permute. It is
therefore easy to see that |Gi| = (n− 1)!.

9. Note that NH(A) ⊆ H by definition. Let h be any element of NH(A). Then
hAh−1 = A. Since H ≤ G, h ∈ G. It follows that h ∈ NG(A). Since NH(A) ⊆ H
and NH(A) ⊆ NG(A), we find that NH(A) ⊆ NG(A) ∩ H. Next consider any
element g ∈ NG(A) ∩ H. By definition, g ∈ H and g ∈ NG(A). Since gAg−1 = A
and g ∈ H, necessarily, g ∈ NH(A). So, NG(A) ∩ H ⊆ NH(A). We conclude that
NH(A) = NG(A) ∩ H.

10. If H is a subgroup of order two, there is exactly one non-identity element of
H. Call this element h. For any g ∈ NG(H), we must have {g1g−1, ghg−1} = {1, h}.
But since g1g−1 = 1 for all g ∈ G, this means that g must satisfy ghg−1 = h. Since
gxg−1 = x for all x ∈ H, we have g ∈ CG(H) and therefore, NG(H) ≤ CG(H). It
was shown in the text that CG(H) ≤ NG(H), so we have NG(H) = CG(H).

If NG(H) = G, then CG(H) = G and every g ∈ G satisfies ghg−1 = h for all
h ∈ H. In other words, for each h ∈ H, gh = hg for all g ∈ G. Therefore, if h ∈ H,
then h ∈ Z(G). It follows that H ≤ Z(G).

11. Let A be any subset of G, and consider any element z ∈ Z(G). Since zg = gz
for all g ∈ G and A is a subset of G, we must have z ∈ CG(A). So, Z(G) ≤ CG(A).
It was shown in the text that CG(A) ≤ NG(A). By transitivity of ≤, we find that
Z(G) ≤ NG(A).

12. (a) We have:

σ · p = 12x1x5
2x7

3 − 18x3
3x4 + 11x23

1 x6
2x3x3

4

τ · (σ · p) = 12x7
1x2x5

3 − 18x3
1x4 + 11x1x23

2 x6
3x3

4

(τ ◦ σ) · p = 12x7
1x2x5

3 − 18x3
1x4 + 11x1x23

2 x6
3x3

4

(σ ◦ τ) · p = 12x1x5
3x7

4 − 18x2x3
4 + 11x23

1 x3
2x6

3x4
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12. (b) Consider any two elements σ, τ ∈ S4 and any p ∈ R. We have σ · (τ ·
p(x1, x2, x3, x4)) = σ · p(xτ(1), xτ(2), xτ(3), xτ(4)) = p(xσ(τ(1)), xσ(τ(2)), xσ(τ(3)), xσ(τ(4))) =

p(xσ◦τ(1), xσ◦τ(2), xσ◦τ(3), xσ◦τ(4)) = (σ ◦ τ) · p(x1, x2, x3, x4). In addition, id · p(x1, x2, x3, x4) =

p(xid(1), xid(2), xid(3), xid(4)) = p(x1, x2, x3, x4). So, these definitions give a group ac-
tion of S4 on R.

12. (c) These are the permutations that fix 4. They are id, (1 2), (1 3), (2 3), (1 2 3),
(1 3 2). These are exactly the permutations of S3, so they obviously satisfy the
group axioms. Call this subgroup G, and note that the homomorphism ϕ : S3 → G
defined by ϕ(σ) = σ is a bijection. Thus, this subgroup is isomorphic to S3.

12. (d) A permutation that stabilizes x1 + x2 either fixes both 1 and 2, or sends 1
to 2 and vice versa. These permutations are id, (1 2), (3 4), (1 2)(3 4). It is easy to
see that this subset is closed under the group operation and under inverses (every
element is order 2), so this subset must be a subgroup of S4 of order 4. It is also
obvious that every element commutes with every other element, so this subgroup
is abelian.

12. (e) These permutations are id, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3),
(1 3 2 4), (1 4 2 3). The stabilizer of x1x2 + x3x4 in S4 is a subgroup of S4 as proven
in the text. Call this stabilizer S. Now, note that |(1 3)(2 4)| = 2, |(1 4 2 3)| = 4,
and (1 4 2 3)(1 3)(2 4) = (1 3)(2 4)(1 3 2 4) = (1 3)(2 4)(1 4 2 3)−1. So,
(1 3)(2 4) and (1 4 2 3) satisfy the same relations as r, s ∈ D8. Thus, there is a
unique homomorphism ϕ : D8 → S. It is easy to see that (1 3)(2 4) and (1 4 2 3)
generate S. Simply note that (1 4 2 3)(1 3)(2 4) = (3 4), (1 3)(2 4)(1 4 2 3) = (1 2),
(1 4 2 3)3 = (1 3 2 4), and (1 3 2 4)(1 2) = (1 4)(2 3). So, ϕ is a surjection, and
since |D8| = |S|, ϕ is a bijection. This means that ϕ is an isomorphism, and S ∼= D8.

12. (f) It is easy to realize that these permutations are identical to those listed in
Exercise 12.(e).

13. The proof is almost identical to the one in Exercise 12.(b).
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14. Consider any element A =

1 a b
0 1 c
0 0 1

 in Z(H(F)). For all B ∈ H(F), A must

satisfy

AB =

1 a b
0 1 c
0 0 1

1 d e
0 1 f
0 0 1


=

1 a + d e + b + a f
0 1 f + c
0 0 1


=

1 a + d e + b + dc
0 1 f + c
0 0 1


=

1 d e
0 1 f
0 0 1

1 a b
0 1 c
0 0 1


= BA

This requires a f = dc for all d, f ∈ F. This is only possible if a = c = 0. Thus, we
have Z(H(F)) = {A ∈ H(F) | A12 = A23 = 0}. There is a natural homomorphism
ϕ : Z(H(F)) → F defined by ϕ(A) = A13 for all A ∈ Z(H(F)). Indeed, for all
A, B ∈ Z(H(F)), we have

ϕ(AB) = ϕ

1 0 a
0 1 0
0 0 1

1 0 b
0 1 0
0 0 1


= ϕ

1 0 a + b
0 1 0
0 0 1


= a + b

= ϕ(A) + ϕ(B)

Note that ϕ has a two-sided inverse ϕ−1 : F → Z(H(F)) defined by

ϕ−1(a) =

1 0 a
0 1 0
0 0 1


for all a ∈ F. It follows that ϕ is a bijection, and thus, an isomorphism. Therefore,
Z(H(F)) ∼= F.
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2.3 Cyclic Groups and Cyclic Subgroups

1. The subgroups are

Z45 = 〈x〉
〈

x3〉 〈
x5〉 〈

x9〉 〈
x15
〉
〈1〉

These satisfy
Z45

〈x3〉 〈x5〉

〈x9〉 〈x15〉

〈1〉

where a line drawn upwards from 〈xn〉 to 〈xm〉 means 〈xn〉 ≤ 〈xm〉.

2. Since x ∈ G, and G is a group, 〈x〉 ≤ G. In addition, |G| < ∞ and |G| = |x| =
|〈x〉|, so 〈x〉 = G.

This is not necessarily true if G is an infinite group. For example, the infinite
group Z contains the element 2, which is of infinite order, but 〈2〉 6= Z.

3. The generators are 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47.

4. The generators are 2k + 1 for 0 ≤ k ≤ 100 except 101.

5. Let ϕ be Euler’s totient function. Then this is simply ϕ(49000) = ϕ(23)ϕ(53)ϕ(72) =

4 · 100 · 42 = 16800.

6. The first part of this exercise is trivial and incredibly tedious, so it is left
as an exercise for the reader. The distinct subgroups are 〈0〉, 〈24〉, 〈16〉, 〈12〉, 〈8〉,
〈6〉, 〈4〉, 〈3〉, 〈2〉, Z/48Z. They satisfy
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Z/48Z

〈3〉〈2〉

〈4〉 〈6〉

〈8〉 〈12〉

〈16〉 〈24〉

〈0〉

7. The subgroups are Z1, Z2, Z3, Z4, Z6, Z8, Z12, Z16, Z24, Z48.

8. Note that Z/48Z = 〈1 | 48 · 1 = 0〉. So, ϕa extends to a homomorphism if
x48a = 1. Since x48 = 1, we find that ϕa is a homomorphism for all a. Since |Z48| =
|Z/48Z|, we need only prove that ϕa is surjective to prove that it is an isomor-
phism. Surjectivity requires 〈xa〉 = Z48, which occurs iff (a, 48) = 1 by Proposition
6 of this section. Thus, if a is one of the following values 1, 5, 7, 11, 13, 17, 19, 23, 25, 29,
31, 35, 37, 41, 43, 47, then ϕa is an isomorphism.

9. Note that ψa extends to a well-defined homomorphism if x48a = 1. Indeed, if
n = m, then n = m + 48k for some k ∈ Z. Therefore, ψa(n) = xna = x(m+48k)a =

xma = ψa(m), so ψa is well-defined. Given that |x| = 36, x48a = 1 iff 36|48a, which
is equivalent to 3|4a. Since 3 - 4, x48a = 1 iff 3|a. Thus, ψa extends to a well-defined
homomorphism if 3|a. For ψa to be a surjective homomorphism, we would require
〈xa〉 = Z36. This occurs iff (a, 36) = 1. Since 3|a, this is impossible. So ψa is never
a surjective homomorphism.

10. The order of 30 is 9 by Proposition 5 of this section. The subgroup
〈
30
〉

is〈
30
〉
= {0, 6, 12, 18, 24, 30, 36, 42, 48}

Their orders are |0| = 1, |6| = |12| = |24| = |30| = |42| = |48| = 9, and |18| =
|36| = 3.



2.3. Cyclic Groups and Cyclic Subgroups 13

11. The cyclic subgroups of D8 are

〈1〉 = {1} 〈r〉 = {1, r, r2, r3}
〈
r2〉 = {1, r2}

〈
r3〉 = {1, r, r2, r3}

〈s〉 = {1, s} 〈sr〉 = {1, sr}
〈
sr2〉 = {1, sr2}

〈
sr3〉 = {1, sr3}

The subgroup {1, s, r2, sr2} is not a cyclic subgroup of D8.

12. (a) Every element of Z2 × Z2 is of order ≤ 2, which means that the cyclic
subgroup generated by any element of Z2 × Z2 is strictly smaller than Z2 × Z2. It
follows that Z2 × Z2 is not a cyclic group.

12. (b) Let Z2 = {1, x}. Note that any element of the form (1, a) for any a ∈ Z

cannot possibly generate an element of the form (x, b), since (1, a)n = (1n, na) =

(1, na) for all n ∈ Z. In addition, any element of the form (x, a) for any a ∈ Z

cannot possibly generate (x, 2a), since (x, a)n = (xn, na) = (x, 2a) requires n = 2,
but x2 = 1 6= x. It follows that no element of Z2 ×Z generates Z2 ×Z, so Z2 ×Z

is not cyclic.

12. (c) Suppose there exists an element (a, b) ∈ Z×Z that generates Z×Z. Let
p ∈ Z be prime, and consider (0, p), (p, 0) ∈ Z×Z. There must exist n, m ∈ Z such
that (a, b)n = (0, p) and (a, b)m = (p, 0). If (a, b)n = (na, nb) = (0, p), we must have
a = 0, since if n = 0, then nb 6= p. But then, (a, b)m = (ma, mb) = (0, mb) 6= (p, 0).
This is a contradiction, so no such (a, b) exists and Z×Z is not cyclic.

13. (a) Suppose Z× Z2 ∼= Z. Then there is an isomorphism ϕ : Z× Z2 → Z.
This implies that there exists an element ϕ((0, x)) ∈ Z such that ϕ((0, x))2 =

ϕ((0, x)2) = ϕ((0, x2)) = ϕ((0, 1)) = 0 (i.e., there exists an element of order 2 in
Z). But we know that no such element of Z exists! Thus, Z× Z2 and Z cannot be
isomorphic.

13. (b) The proof is almost identical to the one in Exercise 13.(a).

14. We know that |σ| = 12. Since 13 ≡ 1 (mod 12), 65 ≡ 5 (mod 12), 626 ≡
2 (mod 12), 1195 ≡ 7 (mod 12), −6 ≡ 6 (mod 12), −81 ≡ 3 (mod 12), −570 ≡
6 (mod 12), and −1211 ≡ 1 (mod 12), we have

σ13 = σ−1211 = (1 2 3 4 5 6 7 8 9 10 11 12) σ626 = (1 3 5 7 9 11)(2 4 6 8 10 12)

σ−81 = (1 4 7 10)(2 5 8 11)(3 6 9 12) σ65 = (1 6 11 4 9 2 7 12 5 10 3 8)

σ−6 = σ−570 = (1 7)(2 8)(3 9)(4 10)(5 11)(6 12) σ1195 = (1 8 3 10 5 12 7 2 9 4 11 6)
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15. Suppose Q×Q is cyclic. Then there exists (a, b) ∈ Q×Q such that 〈(a, b)〉 =
Q×Q. Let p, q ∈ Z be two distinct primes, and consider

(
0, p

q

)
,
(

p
q , 0
)
∈ Q×Q.

There exists, n, m ∈ Z such that (a, b)n =
(

0, p
q

)
and (a, b)m =

(
p
q , 0
)

. If (a, b)n =

(na, nb) =
(

0, p
q

)
, then we must have a = 0. But then, (a, b)m = (ma, mb) =

(0, mb) 6=
(

p
q , 0
)

. This is a contradiction, so Q×Q is not cyclic.

16. Let d = (n, m), n = ad, and m = bd. Let ` be the least common multiple of n
and m. Then we have ` = nm

d = abd. Observe that (xy)` = x`y` = xnbyma = 1b1a =

1. Therefore, |xy| divides `. This is not necessarily true if x and y do not commute
(indeed, if x and y do not commute, |xy| could be ∞). Consider the elements r2 and
r3 of D10. All powers of r commute, and |r2| = |r3| = 5, but |r2r3| = |r5| = |1| = 1.

17. A presentation for Zn is 〈x | xn = 1〉.

18. Consider the map ϕ : Zn → H defined by ϕ(xk) = hk for any k ∈ Z. This
clearly maps x to h. Consider any two elements xi, xj ∈ Zn such that xi = xj.
Then n|i− j so that we may write i = qn + j for some q ∈ Z. Then ϕ(xi) = hi =

hqn+j = (hn)qhj = hj = ϕ(xj), so this map is well-defined. This map is also a
homomorphism, since ϕ(xi)ϕ(xj) = hihj = hi+j = ϕ(xi+j) = ϕ(xixj) for any two
elements xi, xj ∈ Zn. Finally, this homomorphism is unique. Let ψ : Zn → H be
another homomorphism satisfying ψ(x) = h. Then we have ψ(xk) = ψ(x)k = hk =

ϕ(xk) for all xk ∈ Zn, so necessarily, ψ = ϕ.

19. Consider the map ϕ : Z→ H defined by ϕ(n) = hn. This map is well-defined,
as there is no ambiguity in the representation of elements of Z. In addition, this
map is a homomorphism, since ϕ(n)ϕ(m) = hnhm = hn+m = ϕ(n + m) for all
n, m ∈ Z. Finally, let ψ : Z → H be another homomorphism satisfying ψ(1) = h.
Then because ψ is a homomorphism, we have ψ(n) = ψ(1)n = hn = ϕ(n) for all
n ∈ Z. Thus, ψ = ϕ and we conclude that ϕ is unique.

20. If xpn
= 1, then x is of finite order, and |x| divides pn. Since p is prime, the

only integers that divide pn are of the form pm, where m ≤ n. Hence, |x| = pm for
some m ≤ n.

21. From the Binomial Theorem, we have

(1 + p)pn−1
=

pn−1

∑
k=0

(
pn−1

k

)
pk =

pn−1

∑
k=0

pn−1!
(pn−1 − k)!k!

pk
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We begin by proving that pn−1 ≥ n, ∀n ∈ Z+. It is clearly true for n = 1, since
p0 = 1. Now, consider n ≥ 2 and suppose it holds true for n− 1. Then for n, we
have pn−1 = p · pn−2 ≥ p(n− 1). Note that p(n− 1) ≥ 3(n− 1) ≥ n, from which
it follows that pn−1 ≥ n. Therefore, pn−1 ≥ n for all n ∈ Z+. It is clear that the kth

term is divisible by pn for all k ≥ n. So let us turn our attention to 1 ≤ k < n. We
may write the kth term of the sum as

pn−1...(pn−1 − k + 1)
k!

pk

Binomial coefficients are integers, so every factor of k! is absorbed by the numera-
tor. Note that for every factor of the form mpi < k in k!, there is a factor pn−1−mpi

in the numerator to absorb the pi. Thus, we only need the factor pn−1 in the nu-

merator to absorb powers of p originating from k itself. Since k ≤ pk−1,
(

pn−1

k

)
must be divisible by pn−k. It follows that for 1 ≤ k < n, the kth term of the sum is
divisible by pn. The only remaining term is the k = 0 term, which is simply 1. So,
(1 + p)pn−1 ≡ 1 (mod pn)

Next, we show that pn−2 ≥ n, ∀n ≥ 3. It holds for n = 3, since p ≥ 3. Now,
assume it holds for n − 1, where n > 3. Then for n, we have pn−2 = p · pn−3 ≥
p(n− 1) ≥ 3(n− 1) ≥ n. Hence the claim. Note that the k = 2 term of the bino-
mial expansion of (1 + p)pn−2

is pn−2−1
2 pn, which is divisible by pn. Using similar

reasoning to that used above, we find that (1 + p)pn−2 ≡ 1 + pn−1 (mod pn). Given
|1+ p| divides pn−1, we know that |1+ p| must be a power of p. However, because
(1 + p)pn−2 6≡ 1 (mod pn), it follows that |1 + p| = pn−1.

21. (Alternate Solution) We prove that (1 + p)pn−1 ≡ 1 (mod pn) for n ∈ Z+ by
induction. Clearly, it holds for n = 1 since 1 + p ≡ 1 (mod p). So suppose it holds
for n− 1, where n > 1. It is easy to see that if (1 + p)pn−2 ≡ 1 (mod pn−1), then
(1 + p)pn−2

= 1 + qpn−1 for some q ∈ Z. Thus, using the Binomial theorem, we
have

(1 + p)pn−1
= ((1 + p)pn−2

)p = (1 + qpn−1)p =
p

∑
i=0

(
p
i

)
qi pi(n−1)

Obviously, for i ≥ 2, the ith term is divisible by pn, because n ≥ 2. The i = 1 term
qpn is also clearly divisible by pn. We conclude that (1 + p)pn−1 ≡ 1 (mod pn), so
the claim also holds for n and we are done.

Next, we prove that (1 + p)pn−2 ≡ 1 + pn−1 (mod pn) for n ≥ 2 by induction.
The claim holds for n = 2, since 1 + p ≡ 1 + p (mod p2) trivially. So suppose it
holds for n− 1, where n > 2. Then we find that (1 + p)pn−3

= 1 + pn−2 + qpn−1 for
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some q ∈ Z. Using the Binomial Theorem, we may write

(1 + p)pn−2
= ((1 + p)pn−3

)p = (1 + (1 + qp)pn−2)p =
p

∑
i=0

(
p
i

)
(1 + qp)i pi(n−2)

Since we are considering n ≥ 3, it is easy to see that for i ≥ 3, the ith term is
divisible by pn. For i = 2, we have p−1

2 (1+ qp)2 p2n−3, which is also clearly divisible
by pn. The i = 1 term is pn−1 + qpn. We are left with

(1 + p)pn−2 ≡ 1 + pn−1 (mod pn)

Clearly, the claim holds for n as well, and we are done. Given |1 + p| divides
pn−1, we know that |1 + p| must be a power of p. However, because (1 + p)pn−2 6≡
1 (mod pn), it follows that |1 + p| = pn−1.

22. We follow a similar strategy to the alternate solution to Exercise 21 above. We
start by proving (1 + 22)2n−2 ≡ 1 (mod 2n). For n = 3, we note that (1 + 22)2 =

1 + 23 + 24 ≡ 1 (mod 23). Suppose it holds true for n − 1, where n > 3. Then
(1 + 22)2n−3

= 1 + 2n−1q for some q ∈ Z. It follows that

(1 + 22)2n−2
= ((1 + 22)2n−3

)2 = (1 + 2n−1q)2 = 1 + 2nq + 22n−2q2

Since we are considering n > 3, we find that (1+ 22)2n−2 ≡ 1 (mod 2n). So we have
the claim.

Now we prove that (1+ 22)2n−3 ≡ 1+ 2n−1 (mod 2n) for n ≥ 3. For n = 3, the claim
holds trivially, since we have (1+ 22) ≡ 1+ 22 (mod 23). Suppose it holds for n− 1,
where n > 3. Then we have (1 + 22)2n−4

= 1 + 2n−2 + 2n−1q = 1 + 2n−2(1 + 2q) for
some q ∈ Z. So, we may write

(1+ 22)2n−3
= ((1+ 22)2n−4

)2 = (1+ 2n−2(1+ 2q))2 = 1+ 2n−1(1+ 2q)+ 22n−2(1+ 2q)2

We are considering n ≥ 4, so we find that (1 + 22)2n−3 ≡ 1 + 2n−1 (mod 2n). Thus,
the claim holds. Using identical reasoning to that used in Exercise 21, we are forced
to conclude that 5 is an element of order 2n−2 in (Z/2nZ)×.

23. Consider 2n − 1. Its square is (2n − 1)2 = 22n − 2n+1 + 1 ≡ 1 (mod 2n), so
it is an element of order 2. Next, consider 2n−1 − 1. Its square is (2n−1 − 1)2 =

22n−2− 2n + 1. Since n ≥ 3, 2n− 2 ≥ n + 1. Thus, (2n−1− 1)2 ≡ 1 (mod 2n). These
elements generate two different subgroups of order 2, which is not possible in a
cyclic group. Therefore, (Z/2nZ)× cannot be a cyclic group for n ≥ 3.

24. (a) Let S = 〈x〉. S, by definition, contains only integral powers of x. Therefore,
if g ∈ NG(S) and gxg−1 6= xa for any a ∈ Z, then gSg−1 6= S. This contradicts the
membership of g in NG(S). So, gxg−1 = xa for some a ∈ Z.
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24. (b) Again, let S = 〈x〉. Consider the product gxkg−1 for any k ∈ Z. Note
that we can stick the identity element g−1g anywhere we want to in this prod-
uct without changing its value. So let us insert an identity element between ev-
ery pair of x’s (if k ≥ 0) or x−1’s (if k < 0) in the product. Then we obtain
gxkg−1 = (gxg−1)k or gxkg−1 = (gx−1g−1)−k. If gxg−1 = xa for some a ∈ Z, then
necessarily, gx−1g−1 = x−a. So, we may write gxkg−1 = xak, and conclude that
gSg−1 ≤ S.

In Exercise 17 of Section 1.7, we proved that for any subset A of G and any fixed
element g ∈ G, |gAg−1| = |A|. Since gSg−1 ≤ S and |gSg−1| = |S|, we find that
gSg−1 = S.

25. Let G be a cyclic group of order n, and let z be a generator of G. Then by
Proposition 6, zk is also a generator of G. Then for any element za ∈ G, there is
an integer ` ∈ Z such that za = (zk)` = (z`)k. Since for every za ∈ G, there exists
z` ∈ G such that (z`)k = za, we conclude that the map x 7→ xk is surjective.

Now let G be any finite group of order n. Pick any element g ∈ G and con-
sider the subgroup H = 〈g〉. By Lagrange’s theorem, |H| divides |G|. It follows
that (|H|, k) = 1, since (|G|, k) = 1. Thus, the map x 7→ xk must be surjective on
every such cyclic subgroup H. This implies that for every element g ∈ G, there
exists h ∈ G such that hk = g. So, the map x 7→ xk is surjective on G.

26. (a) Let x be a generator of Zn. It is obvious that σa is a homomorphism, since
σa(xixj) = σa(xi+j) = xa(i+j) = xaixaj = σa(xi)σa(xj) for any xi, xj ∈ Zn. We already
have from Exercise 25 that if (a, n) = 1, then σa is a surjection. Consider any two
elements xi, xj ∈ Zn such that σa(xi) = σa(xj). This means xia = xja or xa(i−j) = 1.
It must be that n|i− j since (a, n) = 1. It follows that xi = xj+qn = xjxqn = xj for
some q ∈ Z. So σa must also be an injection, making it an automorphism.

Next, consider the case (a, n) 6= 1. Let d = (a, n), bd = a, and cd = n. Since
c < n, x 6= xc+1. However, σa(xc+1) = xac+a = xbnxa = xa = σa(x). So σa cannot be
an injection, and therefore, cannot be an automorphism.

26. (b) If a ≡ b (mod n), then a = b + qn for some q ∈ Z. Consider any element
x ∈ Zn. It is an easy corollary of Lagrange’s theorem that if G is a finite group and
x is any element of G, then x|G| = 1. We have σa(x) = xa = xb+qn = xb = σb(x).
Thus, σa = σb.

Conversely, if σa = σb, then σa(x) = xa = xb = σb(x), where x is a generator of Zn.
It follows that xb−a = 1, which implies that n|b− a. Therefore, a ≡ b (mod n).
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26. (c) Let x be a generator of Zn and consider any automorphism ϕ : Zn → Zn.
It is easy to see that ϕ is completely determined by its action on x. ϕ must map x
to some element xa ∈ Zn. This fact allows us to see that for any element xi ∈ Zn,
we have ϕ(xi) = ϕ(x)i = (xa)i = xai = σa(xi). Thus, ϕ = σa for some a ∈ Z.

26. (d) Consider any two maps σa, σb ∈ Aut(Zn) and any element z ∈ Zn. We
have σa ◦ σb(z) = σa(zb) = zab = σab(z). It follows that σa ◦ σb = σab. Let us define
the map ϕ : (Z/nZ)× → Aut(Zn) by ϕ(ā) = σa. It is easy to see that this map is
well-defined using the results of Exercise 26.(b), and it must be a homomorphism,
since ϕ(ā) ◦ ϕ(b̄) = σa ◦ σb = σab = ϕ(ab).

Since the codomain is Aut(Zn), it contains only maps σa such that (a, n) = 1.
Thus, by Proposition 4 of Section 0.3, we find that for every element σa ∈ Aut(Zn),
there exists ā ∈ (Z/nZ)× such that ϕ (ā) = σa. ϕ is therefore a surjection.

Finally, if ϕ(ā) = σa = σb = ϕ(b̄), then it must be that a ≡ b (mod n). This
implies that ā = b̄, so ϕ is also an injection and therefore, an isomorphism.
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2.4 Subgroups Generated by Subsets of a Group

1. Everything in H must be in 〈H〉, since 〈H〉 is the intersection of all subgroups
of G containing H. H is one of the subgroups of G containing H, so anything not
in H would not be an element of 〈H〉. Therefore, everything in 〈H〉 is also in H,
and H = 〈H〉.

2. Consider any element a ∈ 〈A〉. Every subgroup containing A must contain a.
Since A ⊆ B, every subgroup containing B also contains A and therefore, contains
a. It follows that a ∈ 〈B〉 and 〈A〉 ≤ 〈B〉.

Consider the group Z/4Z and let A = {2̄} and B = {0̄, 2̄}. Clearly, A ( B,
but 〈A〉 = 〈B〉.

3. Every element of 〈H, Z(G)〉 is a finite product of elements of H and/or Z(G).
From the definition of Z(G) and the fact that H is an abelian subgroup, we know
that all elements of H and Z(G) commute with each other. Consider any two
elements a, b ∈ 〈H, Z(G)〉 and write a = aε1

1 ...aεn
n and b = bδ1

1 ...bδm
m , where the

ai, bj ∈ H ∪ Z(G). We can commute the ai’s and bj’s in the product ab to see that
ab = aε1

1 ...aεn
n bδ1

1 ...bδm
m = bδ1

1 ...bδm
m aε1

1 ...aεn
n = ba. So 〈H, Z(G)〉 must be abelian.

Let A be a finite abelian group and G = A× D6. Let H = {(a, 1)|a ∈ A}. Then
for any b, c ∈ A, we know that (b, r), (c, s) ∈ CG(H). But (b, r)(c, s) = (bc, rs) 6=
(bc, sr) = (c, s)(b, r), so 〈H, CG(H)〉 cannot be abelian.

4. Consider any element h ∈ 〈H − {1}〉. It must be true that h ∈ H or it would
contradict the fact that H is closed under the group operation, so 〈H − {1}〉 ⊆ H.
Note that 〈H − {1}〉 contains the identity because it is a subgroup of G. So every
element of H is also in 〈H − {1}〉. It follows that H = 〈H − {1}〉.

5. No two distinct 2-cycles of S3 are disjoint, so let (a b), (b c) ∈ S3 be any two
distinct 2-cycles. Since (a b)(b c) = (a b c), (b c)(a b) = (a c b), and (b c)(a b c) =
(a c), we find that 〈(a b), (b c)〉 = S3.

6. Notice that (1 2) and (1 2)(3 4) generate distinct subgroups of order 2, so
the subgroup generated by both elements cannot be cyclic. Furthermore, these
elements commute, and their product (1 2)(1 2)(3 4) = (3 4) is an element of
order 2. Thus, 〈(1 2), (1 2)(3 4)〉 is a noncyclic subgroup of order 4.

7. Observe that (1 2)(1 3)(2 4) = (1 3 2 4). Clearly, the subgroup of S4 generated
by (1 2) and (1 3)(2 4) is identical to the subgroup generated by (1 2) and (1 3 2 4).
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Call this subgroup G. Observe that (1 2)(1 3 2 4) = (1 3 2 4)3(1 2). With
this relation, we can deduce that |G| ≤ 8. Given that |〈(1 3 2 4)〉| = 4 and
(1 2) /∈ 〈(1 3 2 4)〉, we can apply Lagrange’s Theorem to conclude that |G| = 8.
Now, define the map ϕ : D8 → G by ϕ(r) = (1 3 2 4) and ϕ(s) = (1 2). D8 has the
presentation D8 = 〈r, s | r4 = s2 = 1, sr = rs−1〉. It is clear that ϕ(s)2 = id, ϕ(r)4 =

id, and ϕ(s)ϕ(r) = (1 2)(1 3 2 4) = (1 3)(2 4) = (1 4 2 3)(1 2) = ϕ(r)−1ϕ(s).
Thus, ϕ extends uniquely to a homomorphism from D8 to G. Furthermore, since
ϕ(s), ϕ(r) generate G, and |D8| = |G|, ϕ is an isomorphism. So D8 ∼= G.

8. Note that (1 2 3 4)2(1 2 4 3) = (1 4) and that (1 2 4 3)(1 4) = (1 4)(1 2 4 3)3.
Thus, the subgroup 〈(1 4), (1 2 4 3)〉 is of order at most 8. Since |〈(1 2 4 3)〉| =
4 and (1 4) /∈ 〈(1 2 4 3)〉 we can apply Lagrange’s Theorem to conclude that
|〈(1 4), (1 2 4 3)〉| = 8. In addition, (1 2 3 4)(1 2 4 3) = (1 3 2), which generates
a subgroup of order 3. By Lagrange’s Theorem, 3 and 8 divide the order of G =

〈(1 2 3 4), (1 2 4 3)〉, so |G| ≥ 24. Since |S4| = 24, G must be all of S4.

9. It is clear that
〈(

1 1
0 1

)〉
is a subgroup of order 3. The products

(
1 1
0 1

)(
1 0
1 1

)
=(

2 1
1 1

)
and

(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
generate a subgroup

〈(
2 1
1 1

)
,
(

1 1
1 2

)〉
of order 8. Therefore, by Lagrange’s Theorem, the subgroup

〈(
1 1
0 1

)
,
(

1 0
1 1

)〉
is

of order at least 24. Since |SL2(F3)| = 24, it follows that SL2(F3) =

〈(
1 1
0 1

)
,
(

1 0
1 1

)〉
.

10. Let G =

〈(
0 −1
1 0

)
,
(

1 1
1 −1

)〉
. Define the map ϕ : Q8 → G by ϕ(i) =(

0 −1
1 0

)
and ϕ(j) =

(
1 1
1 −1

)
. It is easy to verify that ϕ(i)4 =

(
1 0
0 1

)
, ϕ(i)2 =(

2 0
0 2

)
= ϕ(j)2, and ϕ(i)ϕ(j) =

(
−1 1
1 1

)
= −ϕ(j)ϕ(i). Thus, ϕ extends uniquely

to a homomorphism from Q8 to G. Furthermore, since ϕ(i), ϕ(j) generate G and
|G| = |Q8|, ϕ is an isomorphism. So Q8 ∼= G.

11. SL2(F3) cannot be isomorphic to S4, as SL2(F3) contains
(

0 −1
1 1

)
, an ele-

ment of order 6, whereas S4 has no such element.

12. The diagonal elements of an upper triangular matrix in GL3(F2) must be 1, so
there are only three free elements in such a matrix. From this, we can conclude that
the order of this subgroup is 23. Call this subgroup G. Define the map ϕ : D8 → G
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by ϕ(s) =

1 1 0
0 1 0
0 0 1

 and ϕ(r) =

1 1 0
0 1 1
0 0 1

. We see that ϕ(r)4 =

1 0 0
0 1 0
0 0 1

,

ϕ(s)2 =

1 0 0
0 1 0
0 0 1

, and ϕ(r)ϕ(s) =

1 0 0
0 1 1
0 0 1

 = ϕ(s)ϕ(r)−1. Thus, ϕ extends

uniquely to a homomorphism from D8 to G. It is easy to verify that ϕ(s), ϕ(r)
generate G. Since ϕ(s), ϕ(r) generate G and |G| = |D8|, ϕ is an isomorphism. So
D8 ∼= G.

13. Notice that the subgroup G generated by
{

1
p

∣∣∣ p is prime
}

must contain all
primes p, since groups are closed under inverses. Now consider any positive ra-
tional number m

n , where m, n ∈ Z. m and n each have unique prime factorizations

m = pk1
1 pk2

2 ...pxi
i , n = q`1

1 q`2
2 ...q

`j
j . Then we find that m

n = pk1
1 pk2

2 ...pxi
i

1
q`1

1

1
q`2

2

... 1

q
`j
j

, so any

positive rational may be written as a product of known elements of G. Therefore,
the set

{
1
p

∣∣∣ p is prime
}

generates the multiplicative group of positive rationals.

14. (a) Any finite group can be generated by the set of all its elements, so every
finite group is finitely generated.

14. (b) The cyclic group 〈1〉 = {1 · n | n ∈ Z} contains all elements of Z. Hence,
Z is finitely generated.

14. (c) Consider any finitely generated subgroup H of Q, and let k be the product
of all the denominators that show up in a set of generators for H. Note that every
element in that set of generators may be written as a multiple of 1

k . It follows that
H ≤

〈 1
k

〉
. Recall that every subgroup of a cyclic group is also cyclic. Thus, any

finitely generated subgroup of Q is cyclic.

14. (d) Suppose for contradiction that there is a finite set A that generates Q.
Then 〈A〉 must be cyclic, so there is some element x ∈ A such that 〈x〉 = Q. But
1
2 x 6∈ 〈x〉 is an element of Q. We have a contradiction, so Q cannot be finitely
generated.

15. The subgroup generated by
{ 1

2n

∣∣ n ∈ Z+
}

is a proper subgroup of Q that is
not finitely generated.

16. (a) Suppose for contradiction that H is a proper subgroup of G and there is
no maximal subgroup of G containing H. If there were no proper subgroups of G
containing H, then H itself would be a maximal subgroup, so there must be at least
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one proper subgroup of G containing H. Furthermore, there can only be finitely
many proper subgroups of G containing H since G is finite. Hence there must be
some subgroup M < G of largest order containing H. But notice that this M is a
maximal subgroup! We have reached a contradiction. So if H is a proper subgroup
of the finite group G, then there is a maximal subgroup of G containing H.

16. (b) Let R be the subgroup of all rotations in D2n. The elements of D2n \ R are
of the form sri where 0 ≤ i < n. Notice that for any i, 〈R ∪ {sri}〉 will contain the
generators s and r of D2n, so that 〈R ∪ {sri}〉 = D2n. It follows that R is a maximal
subgroup of D2n.

16. (c) Let G = 〈x〉 be a cyclic group of order n ≥ 1. Let H = 〈xp〉 for some prime
p dividing n. Suppose that there is a proper subgroup K = 〈xd〉 of G such that
H < K and K 6= G. Since |H|p = |K|d and |H| < |K|, it follows that d < p. Fur-
thermore, if xp ∈ K, then p must be a multiple of d. This contradicts the primality
of p, so no such K can exist. Therefore, H is a maximal subgroup.

Now, consider a proper subgroup H = 〈xd〉 of G, where d is not prime. Then
there exist a, b ∈ Z+ with 1 < a < d and 1 < b < d such that d = ab. Notice that
K = 〈xa〉 is also a proper subgroup of G with H ≤ K. Since |H|d = |K|a and a < d,
it follows that |H| < |K|. Then H < K and H cannot be a maximal subgroup. So,
we may conclude that H is a maximal subgroup iff H = 〈xp〉 for some p dividing
n.

17. (a) Every proper subgroup of G must contain the identity, so H 6= ∅. Now,
consider any two elements h1, h2 ∈ H. There must be subgroups H1, H2 ∈ C such
that h1 ∈ H1 and h2 ∈ H2. Since C is a chain, either H1 ≤ H2 or vice versa.
Assume WLOG that H1 ≤ H2. Then h1, h2 ∈ H2 and therefore, so is h1h−1

2 . Since
h1h−1

2 ∈ H2, it must also be in H. So, H is a subgroup of G.

17. (b) Suppose that H is not a proper subgroup of G. Then H contains every
generator of G. So for each generator gi, there must be some Hi ∈ C such that
gi ∈ Hi. Since C is a chain, one of these subgroups must contain all the others. Call
this subgroup Hm. Hm cannot be a proper subgroup of G, yet it is an element of S .
We have a contradiction, so H must be a proper subgroup of G.

17. (c) Note that for every chain C in S , there is an upper bound H ∈ S : the
union of all elements of C. So, by Zorn’s Lemma, S must have a maximal element.

18. (a) Suppose Hk ≤ Hm for some k, m ∈ Z+. Then |Hk| ≤ |Hm|, or pk ≤ pm. It
follows that k ≤ m.
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Now suppose that k ≤ m. Consider any element z ∈ Hk. It is easy to see that

zpm
=
(

zpk
)pm−k

= 1pm−k
= 1. Since every element of Hk is also an element of Hm,

Hk ≤ Hm. Thus, Hk ≤ Hm iff k ≤ m.

18. (b) Consider any k ∈ Z+. Notice that the elements of Hk are simply integer
powers of exp(2πi/pk). So, we may write Hk = 〈exp(2πi/pk)〉.

18. (c) Consider any proper subgroup G of Z. There is at least one z ∈ Z such
that z 6∈ G. Let |z| = pn. It is clear that for all k ≥ n, none of the generators
of Hk are in G; otherwise, G would contain z. Therefore, G is finite and contains
elements of order at most pn−1.

Now, let g be the element of largest order in G, and let |g| = pm, where m < n.
Note that g generates Hm, so that Hm ≤ G. Hm, in turn, contains all elements of
order at most pm. Hence, every element of G is in Hm and G ≤ Hm. It follows that
G = Hm, so we have the claim.

18. (d) Suppose that Z is finitely generated. Then there are generators z1, z2, ..., zm

such that Z = 〈z1, z2, ..., zm〉. Denote by zk the generator of largest order, and let
|zk| = pn. Then Z = 〈z1, z2, ..., zm〉 = 〈zk〉 = Hn. But this implies that Hn+1 ≤ Hn,
which is absurd! So, Z cannot be finitely generated.

19. (a) Consider any q ∈ Q. Note that for any k ∈ Z \ {0}, q
k ∈ Q.

19. (b) Suppose that there is a finite divisible abelian group A. Let |A| = n
and consider any non-identity element a ∈ A. Since A is divisible, there must be
distinct elements x1, ..., xn+1 such that xi is the ith root of a. This is impossible, as
|A| = n. So, a finite divisible abelian group cannot exist.

20. Let A, B be two divisible groups, and consider any element (a, b) ∈ A × B.
Since A, B are divisible, for each k ∈ Z \ {0}, there exists x ∈ A, y ∈ B such that
xk = a and yk = b. Therefore, for each k ∈ Z \ {0}, there exists (x, y) ∈ A× B such
that (x, y)k = (xk, yk) = (a, b). So, A× B is divisible.

Now, let A × B be a divisible group. Consider any a ∈ A, any b ∈ B, and any
k ∈ Z \ {0}. Since (a, b) ∈ A× B, ∃(x, y) ∈ A× B such that (x, y)k = (xk, yk) =

(a, b). So, there exists x ∈ A and y ∈ B such that xk = a and yk = b. It follows that
A, B are divisible.
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2.5 The Lattice of Subgroups of a Group

1. The following are possible sublattice structures. Any subgroups not explicitly
represented in a sublattice are assumed to be equal to one of the subgroups that
are. Other sublattices may be obtained by swapping/substituting subgroups.

G

1

G

H

1

G

H

K

1

G

H K

1

G

H K

H ∩ K

1

G

〈H, K〉

H K

1

G

〈H, K〉

H K

H ∩ K

1

2. (a) 〈sr6〉, 〈sr2〉, 〈r4〉, 1

2. (b) 〈sr7〉, 〈sr3〉, 〈r4〉, 1

2. (c) 〈r〉, 〈r2〉, 〈sr2, r4〉, 〈s, r4〉, 〈sr3, r4〉, 〈sr5, r4〉, 〈s, r2〉, 〈sr, r2〉, D16

2. (d) 〈s, r4〉, 〈s, r2〉, D16

3. The following is a presentation for V4: 〈a, b | a2 = b2 = 1, ab = ba〉. Define the
map ϕ : V4 → 〈s, r2〉 by ϕ(a) = s and ϕ(b) = r2. It is clear that ϕ(a)2 = ϕ(b)2 = 1,
and that ϕ(a)ϕ(b) = sr2 = r−2s = r2s = ϕ(b)ϕ(a). So ϕ extends to a unique
homomorphism. Since s, r2 obviously generate 〈s, r2〉 and |V4| = |〈s, r2〉|, we find
that ϕ is an isomorphism. Thus, V4

∼= 〈s, r2〉.

4. D8 = 〈r, s〉 = 〈r2s, r〉 = 〈rs, r〉 = 〈r3s, r〉 = 〈s, rs〉 = 〈s, r3s〉 = 〈r2s, rs〉 =

〈r2s, r3s〉 = 〈r3, s〉 = 〈r2s, r3〉 = 〈rs, r3〉 = 〈r3s, r3〉.

5. x could be r, r3, r5, r7, sr, sr3, sr5, or sr7.

6. (a) CD8(1) = CD8(r
2) = D8, CD8(r) = CD8(r

3) = 〈r〉, CD8(s) = CD8(r
2s) =

〈s, r2〉, CD8(rs) = CD8(r
3s) = 〈rs, r2〉.

6. (b) CQ8(1) = CQ8(−1) = Q8, CQ8(i) = CQ8(−i) = 〈i〉, CQ8(j) = CQ8(−j) = 〈j〉,
CQ8(k) = CQ8(−k) = 〈k〉.

6. (c) CS3(1) = S3, CS3((1 2)) = 〈(1 2)〉, CS3((1 3)) = 〈(1 3)〉, CS3((2 3)) = 〈(2 3)〉,
CS3((1 2 3)) = CS3((1 3 2)) = 〈(1 2 3)〉.
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6. (d) CD16(1) = CD16(r
4) = D16, CD16(r) = CD16(r

2) = CD16(r
3) = CD16(r

5) =

CD16(r
6) = CD16(r

7) = 〈r〉, CD16(s) = CD16(sr4) = 〈s, r4〉, CD16(sr6) = CD16(sr2) =

〈sr2, r4〉, CD16(sr3) = CD16(sr7) = 〈sr3, r4〉, CD16(sr5) = CD16(sr) = 〈sr5, r4〉.

7. From the previous exercise, it is clear that Z(D16) = 〈r4〉.

8. (a) NS3(1) = NS3(〈(1 2 3)〉) = S3, NS3(〈(1 2)〉) = 〈(1 2)〉, NS3(〈(1 3)〉) =

〈(1 3)〉, NS3(〈(2 3)〉) = 〈(2 3)〉.

8. (b) NQ8(1) = NQ8(〈−1〉) = NQ8(〈i〉) = NQ8(〈j〉) = NQ8(〈k〉) = Q8.

9. (a) The lattice of subgroups is shown below:

Z/16Z

〈2〉

〈4〉

〈8〉

〈0〉

9. (b) The lattice of subgroups is shown below:

Z/24Z

〈2〉 〈3〉

〈4〉 〈6〉

〈8〉 〈12〉

〈0〉

9. (c) This was done in Exercise 6 of Chapter 2 Section 3.
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10. Consider any group G of order 4. We first note that G must be abelian. If
it were not, there would be two distinct non-identity elements g, h ∈ G that do
not commute. This would imply that 1, g, h, gh, hg are all distinct elements of G,
contradicting the fact that |G| = 4.

If G has an element of order 4, then G must be cyclic. Since |G| = |Z4|, Theo-
rem 4 of Chapter 2 Section 3 allows us to conclude that G ∼= Z4.

If G has no elements of order 4, then it cannot have elements of order 3 either.
Suppose there were such an element r ∈ G. Then there must also be a non-identity
element g ∈ G such that g 6∈ 〈r〉. But this element must be of order at least 2, and
Lagrange’s theorem would then imply that |G| ≥ 6. This is absurd. Hence, all
non-identity elements of G must be of order 2. From here, an argument identical
to the one used in Exercise 3 of this section may be used to prove that G ∼= V4.

11. The following is the subgroup lattice of QD16:

QD16

〈σ2, τ〉 〈σ〉 〈σ2, τσ〉

〈σ4, τσ2〉 〈σ4, τ〉 〈σ2〉 〈τσ〉 〈τσ3〉

〈τσ2〉 〈τσ6〉 〈τσ4〉 〈τ〉 〈σ4〉

1
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12. The following is the subgroup lattice of A:

A

〈a, b2〉 〈b〉 〈ab〉

〈ab2〉 〈a〉 〈b2〉

1

13. The following is the subgroup lattice of G:

G

〈y〉 〈xy〉〈x, y2〉

〈x, y4〉 〈xy2〉 〈y2〉

〈xy4〉 〈x〉 〈y4〉

1
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14. We begin by noting that 〈v〉 is a cyclic group of order 8, so by Theorem 4 of
Chapter 2 Section 3, 〈v〉 ∼= Z8.

Next, note that 〈uv〉 contains the elements (uv)0 = (uv)8 = 1, (uv)1 = uv,
(uv)2 = v6, (uv)3 = uv7, (uv)4 = v4, (uv)5 = uv5, (uv)6 = v2, (uv)7 = uv3.
Thus, 〈uv〉 is a cyclic group of order 8, and 〈uv〉 ∼= Z8.

Finally, we examine 〈u, v2〉. Define the map ϕ : Z2 × Z4 → 〈u, v2〉 by ϕ(a) = u
and ϕ(b) = v2. Clearly, ϕ(a)2 = ϕ(b)4 = 1 and ϕ(a)ϕ(b) = uv2 = uv10 = v2u =

ϕ(b)ϕ(a), so ϕ extends to a unique homomorphism. It is not hard to see that 〈u, v2〉
is a group of order 8, and 〈u, v2〉 is obviously generated by ϕ(a), ϕ(b). It follows
that ϕ is an isomorphism and 〈u, v2〉 ∼= Z2 × Z4.

The following is the subgroup lattice of M:

M

〈v〉 〈uv〉〈u, v2〉

〈u, v4〉 〈uv2〉 〈v2〉

〈uv4〉 〈u〉 〈v4〉

1

It is identical to the subgroup lattice of the abelian group Z2 × Z8. Suppose
that M ∼= Z2 × Z8, and let ϕ : Z2 × Z8 → M be an isomorphism. Then there must
be elements z1, z2 ∈ Z2 × Z8 such that ϕ(z1) = u and ϕ(z2) = v. Since ϕ is an
isomorphism, we must have ϕ(z1)ϕ(z2) = ϕ(z1z2) = ϕ(z2z1) = ϕ(z2)ϕ(z1). But
we know from the presentation of M that uv 6= vu! Therefore, there can be no such
isomorphism ϕ, and M is not isomorphic to Z2 × Z8.



15. Obviously, 〈r〉 is a cyclic group of order 8, so we must have 〈r〉 ∼= Z8.

The subgroups 〈s, r2〉 and 〈sr, r2〉 are isomorphic to D8. This can be easily proven
by using a presentation of D8 to construct an isomorphism for each of these sub-
groups. In the case of 〈s, r2〉, the isomorphism maps s → s and r → r2. In the case
of 〈sr, r2〉, the isomorphism maps s→ sr and r → r2.

16. By inspection, we can see that the elements of order 2 in QD16 are τσ2, τσ4,
τσ6, τ, and σ4. The join of their respective cyclic subgroups is obviously 〈σ2, τ〉.

17. By inspection, we can see that the elements of order 2 in M are uv4, v4, and u.
Their join is 〈u, v4〉, a subgroup of order 4 containing exactly the elements of order
≤ 2 in M. In Exercise 10 of this section, we proved that if a group of order 4 has
no elements of order 4, then it must be isomorphic to V4. Hence, 〈u, v4〉 ∼= V4.

18. CQD16(1) = CQD16(σ
4) = QD16, CQD16(σ) = CQD16(σ

2) = CQD16(σ
3) = CQD16(σ

5) =

CQD16(σ
6) = CQD16(σ

7) = 〈σ〉, CQD16(τ) = CQD16(τσ4) = 〈σ4, τ〉, CQD16(τσ2) =

CQD16(τσ6) = 〈σ4, τσ2〉, CQD16(τσ) = CQD16(τσ5) = 〈τσ〉, CQD16(τσ3) = CQD16(τσ7) =

〈τσ3〉.

19. ND16(〈s, r4〉) = 〈s, r2〉.

20. (a) NQD16(〈τσ〉) = 〈σ2, τσ〉.

20. (b) NQD16(〈τ, σ4〉) = 〈σ2, τ〉


	Front page
	Contents
	2 Subgroups
	2.1 Definition and Examples
	2.2 Centralizers and Normalizers, Stabilizers and Kernels
	2.3 Cyclic Groups and Cyclic Subgroups
	2.4 Subgroups Generated by Subsets of a Group
	2.5 The Lattice of Subgroups of a Group


