CLASSNAME: Homework \#NUM

Due on DUE DATE
CLASS INSTRUCTOR

AUTHOR

Problem 1

Give an appropriate positive constant c such that $f(n) \leq c \cdot g(n)$ for all $n>1$.

1. $f(n)=n^{2}+n+1, g(n)=2 n^{3}$
2. $f(n)=n \sqrt{n}+n^{2}, g(n)=n^{2}$
3. $f(n)=n^{2}-n+1, g(n)=n^{2} / 2$

Solution

We solve each solution algebraically to determine a possible constant c.

Part One

$$
\begin{aligned}
n^{2}+n+1 & = \\
& \leq n^{2}+n^{2}+n^{2} \\
& =3 n^{2} \\
& \leq c \cdot 2 n^{3}
\end{aligned}
$$

Thus a valid c could be when $c=2$.

Part Two

$$
\begin{aligned}
n^{2}+n \sqrt{n} & = \\
& =n^{2}+n^{3 / 2} \\
& \leq n^{2}+n^{4 / 2} \\
& =n^{2}+n^{2} \\
& =2 n^{2} \\
& \leq c \cdot n^{2}
\end{aligned}
$$

Thus a valid c is $c=2$.

Part Three

$$
\begin{aligned}
n^{2}-n+1 & = \\
& \leq n^{2} \\
& \leq c \cdot n^{2} / 2
\end{aligned}
$$

Thus a valid c is $c=2$.

Problem 2

Let $\Sigma=\{0,1\}$. Construct a DFA A that recognizes the language that consists of all binary numbers that can be divided by 5 .

Let the state q_{k} indicate the remainder of k divided by 5 . For example, the remainder of 2 would correlate to state q_{2} because $7 \bmod 5=2$.

Figure 1: DFA, A, this is really beautiful, ya know?

Justification

Take a given binary number, x. Since there are only two inputs to our state machine, x can either become $x 0$ or $x 1$. When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multipying by two and adding one.

Using this knowledge, we can construct a transition table that tell us where to go:

	$x \bmod 5=0$	$x \bmod 5=1$	$x \bmod 5=2$	$x \bmod 5=3$	$x \bmod 5=4$
$x 0$	0	2	4	1	3
$x 1$	1	3	0	2	4

Therefore on state q_{0} or $(x \bmod 5=0)$, a transition line should go to state q_{0} for the input 0 and a line should go to state q_{1} for input 1. Continuing this gives us the Figure 1.

Problem 3

```
Write part of Quick-Sort(list,start,end)
function QuICK-SorT(list, start, end)
    if start }\geq\mathrm{ end then
            return
    end if
    mid }\leftarrow\mathrm{ Partition(list, start, end)
    QUICK-SORT(list, start,mid - 1)
    QuIck-Sort(list,mid + 1, end)
end function
```

Algorithm 1: Start of QuickSort

Problem 4

Suppose we would like to fit a straight line through the origin, i.e., $Y_{i}=\beta_{1} x_{i}+e_{i}$ with $i=1, \ldots, n, \mathrm{E}\left[e_{i}\right]=0$, and $\operatorname{Var}\left[e_{i}\right]=\sigma_{e}^{2}$ and $\operatorname{Cov}\left[e_{i}, e_{j}\right]=0, \forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta_{1}}$ for the slope β_{1}.

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$
\begin{aligned}
R S S & =\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{1} x_{i}\right)^{2}
\end{aligned}
$$

By taking the partial derivative in respect to $\hat{\beta_{1}}$, we get:

$$
\frac{\partial}{\partial \hat{\beta_{1}}}(R S S)=-2 \sum_{i=1}^{n} x_{i}\left(Y_{i}-\hat{\beta_{1}} x_{i}\right)=0
$$

This gives us:

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i}\left(Y_{i}-\hat{\beta}_{1} x_{i}\right) & =\sum_{i=1}^{n} x_{i} Y_{i}-\sum_{i=1}^{n} \hat{\beta_{1}} x_{i}^{2} \\
& =\sum_{i=1}^{n} x_{i} Y_{i}-\hat{\beta_{1}} \sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

Solving for $\hat{\beta_{1}}$ gives the final estimator for β_{1} :

$$
\hat{\beta_{1}}=\frac{\sum x_{i} Y_{i}}{\sum x_{i}^{2}}
$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta_{1}}$.

Solution

For the bias, we need to calculate the expected value $\mathrm{E}\left[\hat{\beta}_{1}\right]$:

$$
\begin{aligned}
\mathrm{E}\left[\hat{\beta}_{1}\right] & =\mathrm{E}\left[\frac{\sum x_{i} Y_{i}}{\sum x_{i}^{2}}\right] \\
& =\frac{\sum x_{i} \mathrm{E}\left[Y_{i}\right]}{\sum x_{i}^{2}} \\
& =\frac{\sum x_{i}\left(\beta_{1} x_{i}\right)}{\sum x_{i}^{2}} \\
& =\frac{\sum x_{i}^{2} \beta_{1}}{\sum x_{i}^{2}} \\
& =\beta_{1} \frac{\sum x_{i}^{2} \beta_{1}}{\sum x_{i}^{2}} \\
& =\beta_{1}
\end{aligned}
$$

Thus since our estimator's expected value is β_{1}, we can conclude that the bias of our estimator is 0 .

For the variance:

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\beta}_{1}\right] & =\operatorname{Var}\left[\frac{\sum x_{i} Y_{i}}{\sum x_{i}^{2}}\right] \\
& =\frac{\sum x_{i}^{2}}{\sum x_{i}^{2} \sum x_{i}^{2}} \operatorname{Var}\left[Y_{i}\right] \\
& =\frac{\sum x_{i}^{2}}{\sum x_{i}^{2} \sum_{i}^{2}} \operatorname{Var}\left[Y_{i}\right] \\
& =\frac{1}{\sum x_{i}^{2}} \operatorname{Var}\left[Y_{i}\right] \\
& =\frac{1}{\sum x_{i}^{2}} \sigma^{2} \\
& =\frac{\sigma^{2}}{\sum x_{i}^{2}}
\end{aligned}
$$

Problem 5

Prove a polynomial of degree $k, a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n^{1}+a_{0} n^{0}$ is a member of $\Theta\left(n^{k}\right)$ where $a_{k} \ldots a_{0}$ are nonnegative constants.

Proof. To prove that $a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n^{1}+a_{0} n^{0}$, we must show the following:

$$
\exists c_{1} \exists c_{2} \forall n \geq n_{0}, c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)
$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^{k} \leq$ $a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n^{1}+a_{0} n^{0}$ even if $c_{1}=1$ and $n_{0}=1$. This is because $n^{k} \leq c_{1} \cdot a_{k} n^{k}$ for any nonnegative constant, c_{1} and a_{k}.

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_{i}$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$
\begin{aligned}
a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n^{1}+a_{0} n^{0} & = \\
& \leq\left(a_{k}+a_{k-1} \ldots a_{1}+a_{0}\right) \cdot n^{k} \\
& =A \cdot n^{k} \\
& \leq c_{2} \cdot n^{k}
\end{aligned}
$$

where $n_{0}=1$ and $c_{2}=A . c_{2}$ is just a constant. Thus the proof is complete.

Problem 18

Evaluate $\sum_{k=1}^{5} k^{2}$ and $\sum_{k=1}^{5}(k-1)^{2}$.

Problem 19

Find the derivative of $f(x)=x^{4}+3 x^{2}-2$

Problem 6

Evaluate the integrals $\int_{0}^{1}\left(1-x^{2}\right) \mathrm{d} x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x$.

