ELEC 340 - Applied Electromagnetics and Photonics

Name: David Li
Student Number: V00818631

Due Date: January 25 2018, 11:30 AM
Assignment: Number 3

Problem 1 Given that the electric field in free space is:

$$
E(R, \theta, t)=\hat{\theta} \frac{2}{R} \sin (\theta) \cos \left(6 \pi \times 10^{9} t-2 \pi R\right) \mathrm{mV} / \mathrm{m}
$$

where R and θ are the radial and polar variable in the spherical coordinate system. Find:
(a) The phasor representation of the given electric field vector.

$$
\tilde{\mathbf{E}}(R, \theta)=\hat{\theta} E_{\theta}=\hat{\theta} \frac{2}{R} \sin (\theta) e^{-j 2 \pi R} \mathrm{mV} / \mathrm{m}
$$

(b) The phasor representation of the associated magnetic field vector.

$$
\begin{aligned}
\nabla & \times \tilde{\mathbf{E}}=j \omega \mu \tilde{\mathbf{H}} \\
\tilde{\mathbf{H}} & =\frac{1}{j \omega \mu} \nabla \times \tilde{\mathbf{E}} \\
\nabla \times \tilde{\mathbf{E}}=\frac{1}{R \sin \theta}\left(\frac{\partial}{\partial \theta}\left(E_{\phi} \sin (\theta)\right)-\frac{\partial E_{\theta}}{\partial \phi}\right) \hat{\mathbf{R}} & +\frac{1}{R}\left(\frac{1}{\sin (\theta)} \frac{\partial E_{R}}{\partial \phi}-\frac{\partial}{\partial R}\left(R E_{\phi}\right)\right) \hat{\theta} \\
& +\frac{1}{R}\left(\frac{\partial}{\partial R}\left(R E_{\theta}\right)-\frac{\partial E_{R}}{\partial \theta}\right) \hat{\phi}
\end{aligned}
$$

Since $\tilde{\mathbf{E}}$ only has non-zero values in the $\hat{\phi}$ direction.

$$
\begin{aligned}
& \nabla \times \tilde{\mathbf{E}}=\frac{1}{r \sin \theta}\left(-\frac{\partial E_{\theta}}{\partial \phi}\right) \hat{\mathbf{R}}-\frac{1}{R} \frac{\partial}{\partial R}\left(R E_{\theta}\right) \hat{\phi}=-\left(\frac{1}{R \sin \theta}\left(\frac{\partial E_{\theta}}{\partial \phi}\right) \hat{\mathbf{R}}+\frac{1}{R} \frac{\partial}{\partial R}\left(R E_{\theta}\right) \hat{\phi}\right) \\
& \tilde{\mathbf{H}}=-\frac{1}{j \omega \mu} \nabla \times \tilde{\mathbf{E}}=\frac{-1}{j \omega \mu} \hat{\phi} \frac{0.002}{R} \sin \theta \frac{\partial}{\partial R}\left(e^{-j 2 \pi R}\right) \\
&=\hat{\phi} \frac{2 \pi}{j 6 \pi \times 10^{9} \times 4 \pi \times 10^{-7}} \frac{0.002}{R} \sin (\theta) e^{-j 2 \pi R} \\
&=\hat{\phi} \frac{5.30516477 \times 10^{-7}}{R} \sin (\theta) e^{-j 2 \pi R-\pi / 2}(\mathrm{~A} / \mathrm{m}) \\
&=\hat{\phi} \frac{53}{R} \sin (\theta) e^{-j 2 \pi R-\pi / 2}(\mu \mathrm{~A} / \mathrm{m})
\end{aligned}
$$

(c) The time-domain representation of the magnetic field you obtained in (b).

$$
=\hat{\phi} \frac{53}{R} \sin (\theta) \cos \left(6 \pi \times 10^{9} t-2 \pi R-\pi / 2\right)(\mu \mathrm{A} / \mathrm{m})
$$

Problem 2 The electric field intensity of a $5-\mathrm{MHz}$ linearly polarized uniform plane wave traveling in free space in $10 \mathrm{~V} / \mathrm{m}$. The electric field is polarized in the +z direction at t $=0$ and the wave in propagating in the -y direction. Find:
(a) The angular frequency and wave number, and intrinsic wave impedance.

Since the plane wave is traveling in free space, $\mu=\mu_{0}$ and $\epsilon=\epsilon_{0}$.

$$
\omega=2 \pi f=10 \pi \mathrm{MHz} \quad k=\omega \sqrt{\mu \epsilon}=10 \pi \times 10^{6} \times 3.335641 \times 10^{-9}=0.0334 \pi \mathrm{rad} / \mathrm{m}
$$

The intrinsic impedance of a lossless medium is defined as:

$$
\eta=\frac{\omega \mu}{k}=\frac{\omega \mu}{\omega \sqrt{\mu \epsilon}}=\frac{\mu}{\epsilon}
$$

Since free space is being used: $\eta=\eta_{0}=120 \pi \Omega$
(b) The field vectors phasor, i.e. $\tilde{\mathbf{E}}$ and $\tilde{\mathbf{H}}$

$$
\begin{aligned}
\tilde{\mathbf{E}} & =-\hat{\mathbf{y}} E_{0}=-\hat{\mathbf{y}} 10 e^{-j 0.0334 \pi z} \mathrm{~V} / \mathrm{m} \\
\nabla & \times \tilde{\mathbf{E}}=\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right) \hat{\mathbf{z}} \\
\tilde{\mathbf{H}} & =\frac{1}{j \omega \mu} \nabla \times \tilde{\mathbf{E}}=-\frac{1}{j \omega \mu} \frac{\partial E_{y}}{\partial z} \hat{\mathbf{x}}=\frac{10(0.0334 \pi) e^{-j 0.0334 \pi z} \hat{\mathbf{x}}}{j \times 2 \pi \times 10 \times 10^{6} \times 4 \pi \times 10^{-7}} \\
& =\hat{\mathbf{x}} \frac{0.08339}{2 \pi} e^{-j 0.0334 \pi z-\pi / 2} \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \mathbf{E}=-\hat{\mathbf{y}} 10 \cos \left(2 \pi 10 \times 10^{6} t-0.0334 \pi z\right) \mathrm{V} / \mathrm{m} \\
& \mathbf{H}=\hat{\mathbf{x}} 0.0132719 \cos \left(2 \pi 10 \times 10^{6} t-0.0334 \pi z-\pi / 2\right) \mathrm{A} / \mathrm{m}
\end{aligned}
$$

(d) Draw a diagram to illustrate the field vectors and propagation direction.

$$
\tilde{\mathbf{H}}=\frac{\nabla \times \tilde{\mathbf{E}}}{j \omega \mu}
$$

$E_{0}=$ electric field amplitude $H_{0}=$ magnetic field amplitude
$c=$ speed of light $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

$\mu_{0}=$ magnetic permeability in a vac-

$$
\text { uum, } \mu_{0}=1.3 \times 10^{-6} \mathrm{~N} / \mathrm{A}^{2}
$$

$$
\varepsilon_{0}=\text { electric permeability in a vac- }
$$

$$
\text { uum, } \varepsilon_{0}=8.9 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}
$$

Problem 3 Suppose that a uniform plane wave is traveling in the +x direction in a lossless dielectric ($\mu_{r}=1$) with the $100 \mathrm{~V} / \mathrm{m}$ electric field in the +z direction. If the wavelength is 25 cm and the velocity of propagation is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find:
(a) The relative permittivity ϵ_{r} and impedance η of the medium.

$$
\begin{aligned}
& u_{p}=\frac{\omega}{k}=\frac{1}{\sqrt{\mu \epsilon}} \\
& \epsilon_{r}=\frac{1}{\mu_{0} \mu_{r} \epsilon_{0} u_{p}^{2}}=\frac{(1)}{4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} 8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\left(2 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=2.24795 \\
& \eta=\frac{\mu}{\epsilon}=\frac{\mu_{r} \mu_{0}}{\epsilon_{r} \epsilon_{0}}=\frac{4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}}{2.24795 \times 8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}}=\frac{120 \pi}{2.24795} \Omega=53.38197 \pi \Omega
\end{aligned}
$$

(b) The angular frequency ω and the wave number k.

Wave Number: $\quad k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.25 \mathrm{~m}}=8 \pi \mathrm{rad} / \mathrm{m}$ $\omega=\mu_{p} \times k=2 \times 10^{8} \mathrm{~m} / \mathrm{s} \times 8 \pi \mathrm{rad} / \mathrm{m}=16 \pi \times 10^{8} \mathrm{rad} / \mathrm{s}$
(c) The time-domain expressions for the electric and magnetic field vectors.

$$
\begin{aligned}
& \tilde{\mathbf{E}}=\hat{\mathbf{x}} \tilde{E}_{0}=\hat{\mathbf{x}} 100 e^{-j k z} \cos (\omega t-k z)=\hat{\mathbf{x}} 100 e^{-8 \pi z} \mathrm{~V} / \mathrm{m} \\
& \nabla \times \tilde{\mathbf{E}}=\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right) \hat{\mathbf{z}} \\
& \tilde{\mathbf{H}}=\frac{1}{j \omega \mu} \nabla \times \tilde{\mathbf{E}}=\frac{1}{j \omega \mu} \frac{\partial E_{x}}{\partial z} \hat{\mathbf{y}}=\frac{100(-8 \pi) e^{-j 8 \pi z} \hat{\mathbf{y}}}{j \times 16 \pi \times 10 \times 10^{8} \times 4 \pi \times 10^{-7}}=-\hat{\mathbf{y}} \frac{1}{8 \pi} e^{-j 8 \pi z-\pi / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{E}=\hat{\mathbf{x}} E_{0}=\hat{\mathbf{x}} 100 \cos (\omega t-k z)=\hat{\mathbf{x}} 100 \cos \left(16 \pi \times 10^{8} t-8 \pi z\right) \mathrm{V} / \mathrm{m} \\
& \mathbf{H}=-\hat{\mathbf{y}} \frac{1}{8 \pi} \cos \left(16 \pi \times 10^{8} t-8 \pi z-\pi / 2\right) \mathrm{A} / \mathrm{m}
\end{aligned}
$$

(d) Draw a diagram to illustrate the field vectors and propagation direction.

$$
\tilde{\mathbf{H}}=\frac{\nabla \times \tilde{\mathbf{E}}}{j \omega \mu}
$$

$E_{0}=$ electric field amplitude
$H_{0}=$ magnetic field amplitude
$c=$ speed of light $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

$\mu_{0}=$ magnetic permeability in a vac-

$$
\text { uum, } \mu_{0}=1.3 \times 10^{-6} \mathrm{~N} / \mathrm{A}^{2}
$$

$\varepsilon_{0}=$ electric permeability in a vacuum, $\varepsilon_{0}=8.9 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$

