Title for title page

Author 1

Author 2

Author 3

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de www.case.hu-berlin.de

- 1. Introduction
- 2. Pre-processing Steps
- 3. Model Selection
- 4. Variable Importance and Dimensionality Reduction
- 5. Results and Conclusion

Introduction — 1-1

Formal Problem Setting

- \boxdot test set: inputs $X' = (x'_1, \dots, x'_t) \in \mathbb{R}^{t \times d}$ without labels

Find a function

$$f: X \to Y$$
 (1)

s.t. the test set labels are predicted as accurately as possible, i.e.

$$f(X') \approx Y'$$
 (2)

- 1. Introduction ✓
- 2. Pre-processing Steps
- 3. Model Selection
- 4. Variable Importance and Dimensionality Reduction
- 5. Results and Conclusion

Pre-processing

Several transformations and cleaning steps needed before putting the data into an algorithm, e.g.

Figure 1: Workflow of Pre-Processing Steps

All transformation need to be preformed on the test set as well!

Title shown at each slide


```
basic preprocessing = function(X com, y, scaler="gaussian")
2
       source ("replace ratings.R")
4
       source ("convert categoricals.R")
5
       source ("impute data.R")
6
       source ("encode time variables.R")
7
       source ("impute outliers .R")
       source ("scale data.R")
8
9
       source ("delete nearzero variables.R")
       X ratings = replace ratings (X com)
10
11
       X imputed = naive imputation (\overline{X} ratings)
       X no outlier = data.frame(lapply(X imputed, igr outlier))
12
       X time encoded = include quarter dummies (X no outlier)
13
       X scaled = scale data(X time encoded, scale method = scaler)
14
       X encoded = data.frame(lapply(X scaled, cat to dummy))
15
       X com = delect nz variable(X encoded)
16
       idx train = c(\overline{1}: length(y))
17
18
       train = cbind(X com[idx train, ]
19
       test = X com[-idx train,]
       return(list(train = train, X com = X com, test = test))
20
21
```

Q dataProcessing

Model Selection —

- 1. Introduction ✓
- 2. Pre-processing Steps ✓
- 3. Model Selection
- 4. Variable Importance and Dimensionality Reduction
- 5. Results and Conclusion

Optimizing Hyper-parameters

Algorithm 1: t-time k-fold crossvalidation and gridSearch

```
foreach i in 1:t do
        Randomly split the data into k folds of the same size
        foreach j in 1:k do
 3
             Use jth fold as test set and the union of remaining folds as training set
             foreach p in 1:grid do
 5
                 Fit model on training set using parameter set p
 6
                 Predict on test set and calculate RMSE
 7
            end
 8
        end
 9
10
        foreach p in 1:grid do
             Calculate average RMSE over the t \times k-runs
11
        end
12
        choose p with the lowest RMSE
13
14 end
```

xgbTuning

Q rf Tuning

Q svmTuning

Taking on the curse of Dimensionality

Problem:

- □ many variables (99 after pre-processing)
- \odot small training set (n = 1460)
- variables are correlated with each other

Our approaches:

- □ Variable selection through variable importance ranking

- 1. Introduction ✓
- 2. Pre-processing Steps ✓
- 3. Model Selection ✓
- 4. Variable Importance and Dimensionality Reduction ✓
- 5. Results and Conclusion

Results

- □ Gaussian SVR with all variable is the single best model
- PCA did not work well
- Models perform best with the full set of variables as Figure ?? suggested

Inputs	Gaussian SVR	Random Forest	GBM
All Variables	0.1308	0.1484	0.1333
Top 30	0.1323	0.1515	0.1436
PCA	0.1607	0.1657	0.1657

Table 1: RMSE of submitted predictions

Github: finalModels

- 1. Introduction ✓
- 2. Pre-processing Steps ✓
- 3. Model Selection ✓
- 4. Variable Importance and Dimensionality Reduction ✓
- 5. Results and Conclusion ✓

References 5-1

References

Breiman, Leo

"Random Forest." Machine learning, 45(1), 5-32, (1999) available on http://machinelearning202.pbworks.com

Chen, Tiangi, and Carlos Guestrin

"XGBoost: Reliable Large-scale Tree Boosting System", Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining Pages 785-794 (2015) available on http://learningsys.org

De Cock. Dean

"Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project" Journal of Statistics Education 19.3 (2011)

available on https://ww2.amstat.org

References 5-2

References

Friedman, Jerome H.

"Greedy function approximation: a gradient boosting machine." Annals of statistics 1189-1232 (2001). available on https://www.jstor.org/journal/annalsstatistics

Kuhn, Max, and Kjell Johnson "Applied predictive modeling". New York: Springer (2013)

Vapnik, Vladimir, Steven E. Golowich, and Alex Smola "Support vector method for function approximation, regression estimation, and signal processing." Advances in neural information processing systems 281-287 (1997) available on https://semanticscholar.org

Title shown at each slide

