TITLE HERE

A thesis report submitted in partial fulfilment of the requirements for the degree of

BE

In

Chemical Engineering

By

Name: Niraj Neupane

Registration no: 123456

DEPARTMENT OF CHEMICAL SCIENCE & ENGINEERING

SCHOOL OF ENGINEERING

KATHMANDU UNIVERSITY

APRIL 2024

BONAFIDE CERTIFICATE

This is to certify that the project entitled project topic is a bonafide record of work done by

Name: Niraj Neupane

Registration no: 123456

in partial fulfilment of the requirements for the award of the degree of **Bachelor of Engineering** in **Chemical Engineering** of the **Kathmandu University**, **Dhulikhel** during the year 2024.

supervisor name

Project Supervisor

Department of Chemical Science & Engineering HOD name

Head of Department

Department of Chemical Science & Engineering

Internal Examination Committee

Department of Chemical Science & Engineering

external

External Examiner

Project viva-voce held on 13th May 2024

ABSTRACT

Abstract here

ACKNOWLEDGEMENTS

Write acknowledgement here

CONTENTS

Al	bstract	i
A	cknowledgements	ii
Li	st of Figures	iv
Li	st of Tables	v
1	INTRODUCTION	1
	1.1 Background	1
2	THEORETICAL BACKGROUND	2
3	METHODOLOGY	3
4	RESULTS AND DISCUSSION	4
5	CONCLUSION	5
Bi	bliography	6

LIST OF FIGURES

1.1	Gasification process		•	•	•		•	•	•		•	•	•	•	•		•							•						•		1
-----	----------------------	--	---	---	---	--	---	---	---	--	---	---	---	---	---	--	---	--	--	--	--	--	--	---	--	--	--	--	--	---	--	---

LIST OF TABLES

4.1	Design parameter range	•	•		•	•	•			•	•	•	•	•	•						•			•		•			•				4
-----	------------------------	---	---	--	---	---	---	--	--	---	---	---	---	---	---	--	--	--	--	--	---	--	--	---	--	---	--	--	---	--	--	--	---

CHAPTER 1 INTRODUCTION

1.1 Background

The production of synthesis gas (syngas), a versatile fuel and feedstock composed primarily of hydrogen (H2) and carbon monoxide (CO), is a critical process for the development of sustainable energy systems and the transition towards a circular bioeconomy [1].

Figure 1.1: Gasification process

CHAPTER 2 THEORETICAL BACKGROUND

This section is especially designed to provide the theoretical background for better understanding of the modeling approaches discussed in the thesis. It also discusses the machine learning and deep learning algorithms applied in the thesis. Moreover, it also discusses the single and multi objective optimization.

CHAPTER 3 METHODOLOGY

CHAPTER 4 RESULTS AND DISCUSSION

Design Parameter	Range
Temperature(K)	913.15-1123.15
Pressure(bar)	1-4
BMR	0.2-2

Table 4.1: Design parameter range

CHAPTER 5 CONCLUSION

In conclusion, this study provides a thorough strategy for improving the efficiency of the gasification process by utilizing modeling, data generation, machine learning, and evolutionary optimization techniques.

BIBLIOGRAPHY

[1] Yi Fang, Manosh C Paul, Sunita Varjani, Xian Li, Young-Kwon Park, and Siming You. Concentrated solar thermochemical gasification of biomass: Principles, applications, and development. *Renewable and Sustainable Energy Reviews*, 150:111484, 2021.