

Presentation Title

Presentation Subtitle

First Author Second Author

- Introduction
- **Document Structure**
- Conclusion

Outline

- Introduction
- 2 Document Structure
 - Figures
 - Subfigures
 - Tables
 - Equation
- Conclusion

Dear author, the organizing committee of OL2A 23 appreciates your contribution.

We would like to inform you that the use of this template is not mandatory.

The time that you have available for your presentation is limited to a maximum of 10 minutes, with an additional 5 minutes exclusively for questions and answers.

Outline

- Introduction
- 2 Document Structure
 - Figures
 - Subfigures
 - Tables
 - Equation
- Conclusion

Include figures

Figure 1: Example of a figure.

Include subfigures

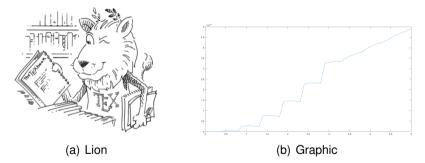


Figure 2: Figures presented with the *subfigure* package.

First Author Second Author Presentation Title 7 / 11

Include tables

Table 1: Tables presented with the booktabs package.

OL2A		
Column 1	Column 2	Column 3
Line 1	Line 2	Line 3
Line 4	Line 5	Line 5

Include equations

$$y_1 = y_0 + h.f(x_0 - y_0) (1)$$

$$y_{n+1} = y_n + \frac{h}{6} \times (k_1 + 2k_2 + 2k_3 + k_4)$$
 (2a)

$$t_{n+1} = t_n + h \tag{2b}$$

First Author Second Author Presentation Title 9 / 11

Outline

- Introduction
- 2 Document Structure
 - Figures
 - Subfigures
 - Tables
 - Equation
- 3 Conclusion

Hope to see you at OL2A!