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Abstract. We prove theorem 2.1 using the method of proof by
way of contradiction. This theorem states that for any set A, that
in fact the empty set is a subset of A, that is ∅ ⊂ A.

We first start with a discussion of subsets.

Definition 1. Let A and B be sets. We say A is a subset of B if every
element in A is also an element of B and we write A ⊂ B. This can
also be written as

(A ⊂ B)↔ ∀x(x ∈ A→ x ∈ B).

Notice that for sets A and B, if A 6⊂ B, then there exists an element
x such that x ∈ A and x /∈ B. That is,

(A 6⊂ B)↔ ∃x(x ∈ A ∧ x /∈ B).

Example 1. Let A = {1, 2, 3, 4, 5}, B = {1, 2} and C = {1, 7}. We
can see that every element in B is an element of A. Further, we can
see that C contains an element, namely 7, which is not in A. Thus,
B ⊂ A and C 6⊂ A.

We now prove theorem 2.1.

Theorem (2.1). For any set A, ∅ ⊂ A.

Proof. By way of contradiction, suppose that the theorem fails. Let A
be a set such that ∅ 6⊂ A. From the above discussion, we can see that
there exists an element x such that x ∈ ∅ and x /∈ A. Let x be such
an element. Since the emptyset has no elements, then x /∈ ∅. Thus, we
have that x ∈ ∅ and x /∈ ∅. This contradiction proves that the theorem
is true. �

1


